Chemistry, Physics and Technology of Surface, 2019, 10 (4), 419-431.

Magnetically sensitive nanocomposites and magnetic liquids based on magnetite, gemcitabine, and antibody HER2



DOI: https://doi.org/10.15407/hftp10.04.419

A. L. Petranovska, M. V. Abramov, N. M. Оpanashchuk, S. P. Turanska, P. P. Gorbyk, N. V. Kusyak, A. P. Kusyak, N. Yu. Lukyanova, V. F. Chekhun

Abstract


The processes of adsorption of gemcitabine (GC) on the surface of nanosized singledomain magnetite (Fe3O4) have been investigated. Under the experiment conditions, the value of adsorption capacity A was ~ 37.2 mg/g, the extraction extent U (%) – 33.13 %, the separation factor E = 82.58 mL/g. It has been determined that adsorption corresponds to the Freundlich model. The magnetic properties of nanocomposites (NС) Fe3O4@GC have been investigated. The average value of the thickness of the adsorbed layer of GC in the composition of Fe3O4@GC NC is 2.4±0.1 nm, as evaluated by the method of magnetic granulometry. Magnetic liquids (ML) have been synthesized based on magnetite and physiological solution (PS) stabilized with sodium oleate (Ol.Na) and polyethylene glycol (PEG), which contain GC and antibody (AB) HER2 (Fe3O4@GC/Ol.Na/PEG+PS). The properties of ML were investigated as well as cytotoxic/cytostatic activity with respect to HepG2 hepatocellular carcinoma of human liver.

Parameters of ML based on magnetite were found: Fe3O4 concentration – 14 mg/mL, Fe3O4 particle size –       4–22 nm, average size of Fe3O4 particles – 10.8 nm; the average size of Fe3O4 particles stabilized with sodium oleate 16.8 nm, saturation magnetization M = 14.1±2.5 % Gs, hypsometric height – 25±10 % cm, viscosity η = 1.14±3 % mPa·s, density ρML = 1.14 ± 1.0 % g/cm3, the concentration of GC was 1.25 mg/mL, that of HER2 AB was 3.75 μg/mL. We have obtained the calculated and graphic data concerning the dependence of the surface area and the specific magnetization of saturation of Fe3O4@GC/Ol.Na/PEG on the thickness of GC layer, which can be useful for predicting of the nanoscale architecture of magnetically sensitive NC and ML in the manufacture of relative drugs. The synergistic nature of the influence of GC/Fe3O4/HER2 complex on HepG2 cells was revealed. It has been determined that IC50 for ML is 0.155 mg/mL, in the range of concentration of 0.025–0.1 mg/mL ML it is biocompatible with HepG2 cells. It has been shown that HER2 AB used alone in the investigated concentrations does not affect HepG2 cell viability/proliferation. In vitro, GC inhibits the proliferation of liver carcinoma cells, the IC50 value was 0.02 mg/mL. The use of ML in complex with GC can increase the cytotoxic activity of the composite by 8–10 %. The ML+GC+HER2 AB complexes caused the synergistic effect and an increase in the cytotoxic activity, compared with GC used alone, up to 18–20 %, while GC contents reduced to 0.008 mg/mL.

The results of the studies indicate that the use of ML based on magnetite, gemcitabine, and antibody increases the effectiveness of the antitumor medicines with a significant reduction in their dose and, respectively, the toxico-allergic reactions of the body, and nanosized magnetite can be promising for the manufacture of magnetically sensitive adsorption materials for medical purposes, e.g. for detoxification of an organism after GC therapy.


Keywords


magnetite; magnetic liquids; gemcitabine; antibody HER2; hepatocellular carcinoma of human liver

Full Text:

PDF

References


1. Roco M.C., Williams R.S. Vision for Nanotechnology R&D in the Next Decade. Alivisatos. 2002. 156: 171.

2. Levy L., Sahoo Y., Earl B.J. Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14(8): 3715. https://doi.org/10.1021/cm0203013

3. Lund K., Manzo A.J., Dabby N., Michelotti N., Johnson-Buck A., Nangreave J., Taylor S., Pei R., Stojanovic M.N., Walter N.G., Winfree E., Yan H. Molecular robots guided by prescriptive landscapes. Nature. 2010. 465(7295): 206. https://doi.org/10.1038/nature09012

4. Muscat R.A., Bath J., Turberfield. A.J. Programmable molecular robot. Nanoletters. 2011. 11(3): 982. https://doi.org/10.1021/nl1037165

5. Shpak A.P., Gorbyk P.P. Physical chemistry of nanomaterials and supramolecular structures. (Kyiv: Naukova dumka, 2007). [In Russian].

6. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics Chemistry and Applications. (Nederlands: Springer, 2009.) https://doi.org/10.1007/978-90-481-2309-4

7. Gorbyk P.P. Nanocomposites with functions of biomedical nanorobots: synthesis, properties, applications. Nanosystems, nanomaterials, nanotechnologies. 2013. 11(2): 323. [In Ukrainian].

8. Patent UA 99211. Gorbyk P.P., Petanovskaya A.L., Turelik M.P., Korduban A.M., Shpak A.P., Chekhun V.F., Turanska S.P., Vasilieva O.A., Lukyanova N. Nanocapsule with functions of nanorobot. 2012.

9. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. Horizons in World Physics. 2017. 292: 1.

10. Pylypchuk V., Kolodynska D., Gorbyk P.P. Gd(III) adsorption on the DTPA-functionalized chitosan/magnetite nanocomposites. Sep. Sci. Technol. 2018. 53(7): 1006. https://doi.org/10.1080/01496395.2017.1330830

11. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: synthesis and properties. In: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. 2014. P. 161.

12. Gorbyk P.P., Lerman L.B, Petranovska A.L., Turanska S.P., Pylypchuk I.V. Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: synthesis, properties and application. Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. 2016. 1: 289. https://doi.org/10.1016/B978-0-323-41533-0.00010-6

13. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5(3): 275. https://doi.org/10.1007/s40097-015-0159-9

14. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6(3): 223. https://doi.org/10.1007/s40097-016-0196-z

15. Gorbyk P.P., Chekhun V.F. Nanocomposites of Medicobiologic Destination: reality and perspectives for oncology. Functional Materials. 2012. 19(2): 145.

16. Pylypchuk I.V., Abramov M.V., Petranovska A.L., Turanksa, S.P., Budnyak T.M., Kusyak N.V., Gorbyk P.P. Multifunctional Magnetic Nanocomposites on the Base of Magnetite and Hydroxyapatite for Oncology. In book International Conference on Nanotechnology and Nanomaterials. (Springer, 2017). P. 35. https://doi.org/10.1007/978-3-319-92567-7_2

17. Abramov M.V., Turanskaya S.P., Gorbyk P.P. Magnetic properties of nanocomposites of the superparamagnetic kernel-shell type. Metallofizika i Noveishie Tekhnologii. 2018. 40(4): 423. [In Ukrainian]. https://doi.org/10.15407/mfint.40.04.0423

18. Abramov M.V., Turanskaya S.P., Gorbyk P.P. Magnetic properties of liquids based on polyfunctional nanocomposites such as superparamagnetic core - multilevel shell. Metalloys. the latest technol. Metallofizika i Noveishie Tekhnologii. 2018. 40(10): 1283. [In Ukrainian].

19. Pylypchuk V., Kołodyńska D., Kozioł M., Gorbyk P.P. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites. Nanoscale Res. Lett. 2016. 11(1):168. https://doi.org/10.1186/s11671-016-1363-3

20. Patent UA 112490 Chekhun V.F., Lukyanova N.Y., Gorbyk P.P., Todor I.M., Petranovskaya A.L., Boshitskaya N.V., Bozhko I.V. Antitumor ferromagnetic nanocomposite. 2016.

21. Gorbyk P.P, Petranovska A.L., Turelyk M.P., Abramov N.V., Chekhun V.F., Lukyanova N.Yu. Construction of magnetocarried nanocomposites for medico-biological applications. Him. Fiz. Tehnol. Poverhni. 2010. 1(3): 360.

22. Gorbyk P.P., Dubrovin I.V., Petranovskaya A.L., Turelik M.P. Magnetically controlled transport of medicines: current state of development and prospects. Surface. 2010. 2(17): 287. [In Russian].

23. Gorbyk P.P., Petranovskaya A.L., Turelik M.P., Abramov N.V., Turanskaya S.P, Pilipchuk E.V., Chekhun V.F., Lukyanova N.Yu., Shpak A.P., Korduban A.M. Problem on directed drug transport: current status and prospects. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 461. [In Russian].

24. Kang T.W., Yevsa T., Woller N., Hoenicke L., Wuestefeld T., Dauch D., Hohmeyer A., Gereke M., Rudalska R., Potapova A., Iken M., Vucur M., Weiss S., Heikenwalder M., Khan S., Gil J., Bruder D., Manns M., Schirmacher P., Tacke F., Ott M., Luedde T., Longerich T., Kubicka S., Zender L. Senescence surveillance of premalignant hepatocytes limits liver cancer development. Nature. 2011. 479(7374): 547. https://doi.org/10.1038/nature10599

25. Yevsa T., Kang T.W., Zender L. Immune surveillance of pre-cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology. 2012. 1(3): 398. https://doi.org/10.4161/onci.19128

26. Schneider C., Teufel A., Yevsa T., Staib F., Hohmeyer A., Walenda G., Zimmermann H.W., Vucur M., Huss S., Gassler N., Wasmuth H.E., Lira S.A., Zender L., Luedde T., Trautwein C., Tacke F. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012. 61(12): 1733. https://doi.org/10.1136/gutjnl-2011-301116

27. Reinhardt A., Yevsa T., Worbs T., Lienenklaus S., Sandrock I., Oberdorfer, L., Korn T., Weiss S., Forster R., Prinz I. Interleukin-23-Dependent γ/δ T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice. Arthritis Rheumatol. 2016. 68(10): 2476. https://doi.org/10.1002/art.39732

28. Wolf B., Krieg K., Falk C., Breuhahn K., Keppeler H., Biedermann T., Schmid E., Warmann S., Fuchs J., Vetter S., Thiele D., Nieser M., Avci-Adali M., Skokowa Y., Schöls L., Hauser S., Ringelhahn M., Yevsa T., Heikenwalder M., Kossatz-Boehlert U. Inducing differentiation of premalignant hepatic cells as a novel therapeutic strategy in hepatocarcinoma. Cancer Res. 2016. 76(18): 5550. https://doi.org/10.1158/0008-5472.CAN-15-3453

29. Gorobets S.V., Gorobets O.Yu., Gorbyk P.P., Uvarova I.V. Functional bio- and nanomaterials for medical purposes. (Kyiv: Condor, 2018). [In Ukrainian].

30. Uvarova I.V., Gorbyk P.P., Gorobets S.V., Ivashchenko O.A., Ulyanchenko N.V. Medical nanomaterials. (Kyiv: Naukova dumka, 2014). [In Ukrainian].

31. Gutorov S.L., Semenova N.N., Zagrekova E.I. New drugs in the treatment of solid tumors. Russian Medical Journal. 2001. 9(22): 1017. [In Russian].

32. Plentz R.R.; Malek N.P. Systemic Therapy of Cholangiocarcinoma. Visceral Medicine. 32(6): 427. https://doi.org/10.1159/000453084

33. Jain A., Kwong L.N., Javle M. Genomic Profiling of Biliary Tract Cancers and Implications for Clinical Practice. Curr. Treat Options Oncol. 17(11): 58. https://doi.org/10.1007/s11864-016-0432-2

34. Firsova N.D. Gemtsitabin. Recent phases II and III of clinical trials in metastatic pancreatic cancer. 2017. https://www.meir-health.ru. [In Russian].

35. Arias J.L., Reddy L.H., Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012. 22(15): 7622. https://doi.org/10.1039/c2jm15339d

36. Popescu R.C., Andronescu E., Vasile B.S., Truscă R., Boldeiu A., Mogoantă L., Mogosanu G.D., Temelie M., Radu M., Grumezescu A.M., Savu D. Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules. 2017. 22(7): 1080. https://doi.org/10.3390/molecules22071080

37. Iglesias G.R., Reyes-Ortega F., Checa Fernandez B.L., Delgado Á.V. Hyperthermia-Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles. Polymers. 2018. 10(3): 269. https://doi.org/10.3390/polym10030269

38. Patent UA 118524. Gorbyk P.P., Petranovska A.L., Abramov M.V., Turanska S.P., Pilipchuk Ye.V., Opanashchuk N.M., Kulish M.P., Dmitrenko O.P., Busko T.O., Pavlenko O.L., Gorobets S.V., Zakharchuk N.K.. Nanocomposite material. 2019.

39. Moiseenko V.M. Possibilities of monoclonal antibodies in the treatment of malignant tumors. Practical Oncology. 2002. 3(4): 253. [In Russian].

40. Tan M., Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv. Exp. Med. Biol. 2007. 608: 119. https://doi.org/10.1007/978-0-387-74039-3_9

41. Santin A.D., Bellone S., Roman J.J., McKenney J.K., Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int. J. Gynaecol. Obstet. 2008. 102(2): 128. https://doi.org/10.1016/j.ijgo.2008.04.008

42. Gorodetskaya A. Modern approaches to treatment for disseminated malignant tumors of the gastrointestinal tract. Oncology. 2011. 13(2): 111. [In Russian].

43. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gaevaya M.V., Gorbyk P.P. Synthesis and properties of magnetically sensitive nanocomposites based on iron and silicon oxides. V. 1. In: Physical chemistry of nanomaterials and supramolecular structures. (Kyiv: Naukova dumka, 2007). P. 394. [In Russian].

44. Freshny R.Ya. Culture of animal cells: a practical guide (Moscow: BINOM. Laboratory of Knowledge, 2010). [In Russian].

45. Zelentsov V.I., Datsko T.Ya. The use of adsorption models to describe the equilibrium in the system of aluminum oxyhydroxide - fluorine. Elektronnaya obrabotka materialov. 2012. 48(6): 65. [In Russian].

46. Chen D.-X., Sun N., Gu H.-C. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agent of magnetic resonance imaging. J. Appl. Phys. 106(6): 063906. https://doi.org/10.1063/1.3211307

47. Lukyanova N.Yu. Doctoral (Biol.) Thesis. (Kyiv, 2015). [In Ukrainian].




DOI: https://doi.org/10.15407/hftp10.04.419

Copyright (©) 2019 A. L. Petranovska, M. V. Abramov, N. M. Оpanashchuk, S. P. Turanska, P. P. Gorbyk, N. V. Kusyak, A. P. Kusyak, N. Yu. Lukyanova, V. F. Chekhun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.