Chemistry, Physics and Technology of Surface, 2019, 10 (4), 432-445.

Composite adsorbents including oxidized graphene: effect of composition on mechanical durability and adsorption of pesticides



DOI: https://doi.org/10.15407/hftp10.04.432

Yu. S. Dzyazko, V. M. Ogenko, L. Ya. Shteinberg, A. V. Bildуukevich, T. V. Yatsenko

Abstract


A number of multifunctional composite adsorbents based on hydrated zirconium dioxide has been synthesized. The inorganic ion exchanger contained nanosheets of oxidized graphene (GO), the modifier amount was   0.5–7 mass. %. The composites were investigated with methods of transmission electron microscopy and nitrogen adsorption-desorption, macropores were determined using water as a working liquid. It has been found that increasing of GO content depresses microporosity, but meso- and macroporosity grow. Crushing strength reduces exponentially with increase of total pore volume from 0.49 to 0.62 cm3 g1. Removal of phenol from water containing also inorganic ions was investigated. Adsorption capacity reaches 0.15–0.85 (phenol), 0.5–0.85 (Ca2+ and Mg2+), 0.005–0.045 (SO42) mmol g1. When the GO content in the composites is 0.5–2 %, this carbon addition improves adsorption of cations and organic molecules comparing with hydrated zirconium dioxide. Further increase in GO amount causes no sufficient effect on adsorption due to decline of specific surface area of the composites. It has been suggested that the optimal content of the modifier, which provides the maximal growth of adsorption capacity, is 2 %. This composite is obtained in a form of large granules (0.3–0.5 mm), their crushing  strength is 9 bar. The material was applied to removal of pesticides (acetomipride, carboxine, epoxyconazole and thiamethoxam) from aqueous multicomponent solution under batch conditions. The residual content of carboxine and epoxyconazole, molecules of which contain benzene rings, is lower than the maximal allowable concentration. No deterioration of pesticide uptake has been found after five cycles of adsorption-regeneration.


Keywords


graphene oxide; hydrated zirconium dioxide; adsorption; phenol; pesticide; crushing strength

Full Text:

PDF

References


1. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010. 4(8): 4806. https://doi.org/10.1021/nn1006368

2. Stankovich S., Piner R.D., Nguyen S.B.T., Ruoff R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006. 44(15): 3342. https://doi.org/10.1016/j.carbon.2006.06.004

3. Chen J., Yao B., Li Ch., Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013. 64: 225. https://doi.org/10.1016/j.carbon.2013.07.055

4. Tao L.-C., Zhang K.-N., Tian H., Liu Y., Wang D.-Y., Chen Y.-Q., Yang Y., Ren T.-L. Graphene-paper pressure sensor for detecting human motions. ACS Nano. 2017. 11(9): 8790. https://doi.org/10.1021/acsnano.7b02826

5. Yao Y., Jiang Ch., Ping J. Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens. Bioelectron. 2019. 123: 178. https://doi.org/10.1016/j.bios.2018.08.048

6. Tan P., Sun J., Hu Y., Fang Z., Bi Q., Chen Y., Cheng J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015. 297: 251. https://doi.org/10.1016/j.jhazmat.2015.04.068

7. Joshi R.K., Alwarappan S., Yoshimura M., .Sahajwalla V., Nishina Y. Graphene oxide: the new membrane material. Appl. Mater. Today. 2015. 1(1): 1. https://doi.org/10.1016/j.apmt.2015.06.002

8. Volfkovich Y.M., Lobach A.S., Spitsyna N.G., Baskakov S.A., Sosenkin V.E., Rychagov A.Y., Kabachkov E.N., Sakars A., Michtchenko A., Shulga Y.M. Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel. J. Porous Mater. 2019. 26(4): 1111. https://doi.org/10.1007/s10934-018-0712-2

9. Volfkovich Y.M., Rychagov A.Y., Sosenkin V.E., Efimov O.N., Os'makov M.I. Measuring the specific surface area of carbon nanomaterials by different methods. Russ. J. Electrochem. 2014. 50(11): 1099. https://doi.org/10.1134/S1023193514110111

10. Dzyazko Yu.S., Ogenko V.M., Volfkovich Yu.M., Sosenkin V.E., Maltseva T.V., Yatsenko T.V., Kudelko K.O. Composite consisting of hydrated zirconium dioxide and graphene oxide for removal of organic and inorganic components from water. Him. Fiz. Technol. Poverhni. 2018. 9(4):417. https://doi.org/10.15407/hftp09.04.417

11. Shulga Y.M., Baskakov S.A., Baskakova Y.V., Volfkovich Y.M., Shulga N.Y., Skryleva E.A., Parkhomenko Y.N., Belay K.G., Gutsev G.L., Rychagov A.Y., Sosenkin V.E., Kovalev I.D. Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. J. Power Sources. 2015. 279: 722. https://doi.org/10.1016/j.jpowsour.2015.01.032

12. Shulga Y.M., Baskakov S.A., Baskakova Y.V., Lobach A.S., Kabachkov E.N., Volfkovich Y.M., Sosenkin V.E., Shulga N.Y., Nefedkin S.I., Kumar Y., Michtchenko A. Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors. J. Alloys Compd. 2018. 730: 88. https://doi.org/10.1016/j.jallcom.2017.09.249

13. Volfkovich Yu.M., Mazin V.M., Urisson N.A. Operation of double-layer capacitors based on carbon materials. Russ. J. Electrochem. 1998. 34(8): 740.

14. Volfkovich Y., Bograchev D., Mikhalin A., Rychagov A., Sosenkin V., Milyutin V., Park D. Electrodes based on carbon nanomaterials: structure, properties, and application to capacitive deionization in static cells. Springer Proceedings in Physics. 2018. 210: 127. https://doi.org/10.1007/978-3-319-91083-3_9

15. Volfkovich Y.M., Bograchev D.A., Mikhalin A.A., RychagovA.Yu., Sosenkin V.E., Park D. Capacitive deionization of aqueous solutions: modeling and experiments. Desalin. Water Treat. 2017. 69: 130. https://doi.org/10.5004/dwt.2017.0469

16. Smirnov V.A., Denisov N.N., Dremova N.N., Volfkovich Y.M., Rychagov A.Y., Sosenkin V.E., Belay K.G., Gutsev G.L., Shulga N.Yu., Shulga Y.M. A comparative analysis of graphene oxide films as proton conductors. Appl. Phys. A. 2014. 117(4): 1859. https://doi.org/10.1007/s00339-014-8824-2

17. Li Z., Chen F., Yuan L., Liu Y., Zhao Y., Chai Z., Shi W. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. J. 2012. 210: 539. https://doi.org/10.1016/j.cej.2012.09.030

18. Gapel G. Speciation of actinides. In: Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health (Chichester, UK: Wiley, 2005).

19. Mi X., Huang G., Xie W., Wang W., Liu Y., Gao J. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon. 2012. 50(13): 4856. https://doi.org/10.1016/j.carbon.2012.06.013

20. Yang K., Chen B., Zhu X., Xing B. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ. Sci. Technol. 2016. 50(20): 11066. https://doi.org/10.1021/acs.est.6b04235

21. Konicki W., Aleksandrzak M., Moszyński D., Mijowska E. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Colloid Interface Sci. 2017. 496: 188. https://doi.org/10.1016/j.jcis.2017.02.031

22. Shulga Y.M., Baskakov S.A., Baskakova Y.V., Lobach A.S., Volfkovich Y.M., Sosenkin V.E., Shulga N.Y., Parkhomenko Y.N., Michtchenko A., Kumar Y. Hybrid porous carbon materials derived from composite of humic acid and graphene oxide. Microporous Mesoporous Mater. 2017. 245: 24. https://doi.org/10.1016/j.micromeso.2017.02.061

23. Kumar A.S.K., Kakan S.S., Rajesh N. A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem. Eng. J. 2013. 230: 328. https://doi.org/10.1016/j.cej.2013.06.089

24. Wu Y., Luo H., Wang H., Wang C., Zhang J., Zhang Z. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J. Colloid Interface Sci. 2013. 394: 183. https://doi.org/10.1016/j.jcis.2012.11.049

25. Geng J., Yin Y., Liang Q., Zhu Z., Luo H. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism. Chem. Eng. J. 2019. 361: 1497. https://doi.org/10.1016/j.cej.2018.10.141

26. Ansari M.O., Kumar R., Ansari S.A., Ansari S.P., Barakat M.A., Alshahrie A., Cho M.H. Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. J. Colloid Interface Sci. 2017. 496: 407. https://doi.org/10.1016/j.jcis.2017.02.034

27. Kumar A.S.K., Jiang S.J. Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution. J. Environ. Chem. Eng. 2016. 4(2): 1698. https://doi.org/10.1016/j.jece.2016.02.035

28. Vu H.C., Dwivedi A.D., Le T.T., Seo S.-H., Kim E.-J., Chang Y.-S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control. Chem. Eng. J. 2017. 307: 220. https://doi.org/10.1016/j.cej.2016.08.058

29. Yan H., Tao X., Yang Z., Li K., Yang H., Li A., Cheng R. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater. 2014. 268: 191. https://doi.org/10.1016/j.jhazmat.2014.01.015

30. Robati D., Rajabi M., Moradi O., Najafi F., Tyagi I., Agarwal S., Gupta V.K. Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. J. Mol. Liq. 2016. 214: 259. https://doi.org/10.1016/j.molliq.2015.12.073

31. Li Y., Du Q., Liu T., Sun J., Wang Y., Wu S., Wang Z., Xia Y., Xia L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr. Polym. 2013. 95(1): 501. https://doi.org/10.1016/j.carbpol.2013.01.094

32. Qi Y., Yang M., Xu W., He S., Men Y. Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 2015. 486: 84. https://doi.org/10.1016/j.jcis.2016.09.058

33. González J.A., Villanueva M.E., Piehl L.I., Copello G.J. Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chem. Eng. J. 2015. 280: 41. https://doi.org/10.1016/j.cej.2015.05.112

34. Dai H.l., Huang Y., Huang H, Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2018. 185: 1. https://doi.org/10.1016/j.carbpol.2017.12.073

35. Li Z., Tan W.-Z., Liu X.-H., Sun Z.-F., Ren P.-G., Yan D.-X. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 2018. 532: 58. https://doi.org/10.1016/j.jcis.2018.07.101

36. Gao Y., Li Y., Zhang L., Huang H., Hu J., Shah S.M., Su X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012. 368(1): 540. https://doi.org/10.1016/j.jcis.2011.11.015

37. Wang H., Chen P. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015. 281: 379. https://doi.org/10.1016/j.cej.2015.06.102

38. Chen X., Chen B. Microscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 2015. 49(10): 6181. https://doi.org/10.1021/es5054946

39. Nam S.W., Jung C., Li H., Yu M., Flora J.R.V., Boateng L.K., Her N., Zoh K.-D., Yoon Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere. 2015. 136: 20. https://doi.org/10.1016/j.chemosphere.2015.03.061

40. Liu B., Salgado S., Maheshwari V., Liu J. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 2016. 26: 41. https://doi.org/10.1016/j.cocis.2016.09.001

41. Lu C., P.-J.J. Huang, Liu B., Ying Y., Liu J. Comparison of graphene oxide and reduced graphene oxide for DNA adsorption and sensing. Langmuir. 2016. 32(41): 10776. https://doi.org/10.1021/acs.langmuir.6b03032

42. Jiang L.-H., Liu Y.-G., Zeng G.-M., Xiao F.-Y., Hu X.-J., Hu X., Wang H., Li T.-T., Zhou L., Tan X.-F. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 284: 93. https://doi.org/10.1016/j.cej.2015.08.139

43. Amphlett C.B. Inorganic Ion Exchangers. (Amsterdam: Elsevier, 1964).

44. Myronchuk V.G., Dzyazko Yu.S., Zmievskii Yu.G., Ukrainets A.I., Bildukevich A.V., Kornienko L.V., Rozhdestvenskaya L.M., Palchik A.V. Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica. 2016. 47: 153. https://doi.org/10.2298/APT1647153M

45. Zmievskii Yu., Rozhdestvenska L., Dzyazko Yu., Kornienko L., Myronchuk V., Bildukevich A., Ukrainetz A. Organic-inorganic materials for baromembrane separation. Springer Proc. Phys. 2017. 195: 675. https://doi.org/10.1007/978-3-319-56422-7_51

46. Dzyazko Yu., Rozhdestveskaya L., Zmievskii Yu., Zakharov V., Myronchuk V. Composite inorganic anion exchange membrane for electrodialytic desalination of milky whey. Mater. Today: Proc. 2019. 6(2):250. https://doi.org/10.1016/j.matpr.2018.10.102

47. Myronchuk V., Zmievskii Y., Dzyazko Y., Rozhdestvenska L., Zakharov V. Whey desalination using polymer and inorganic membranes: Operation conditions. Acta Periodica Technologica. 2018. 49: 103. https://doi.org/10.2298/APT1849103M

48. Dzyazko Yu., Kolomyets E., Borysenko Yu., Chmilenko V., Fedina I. Organic-inorganic sorbents containing hydrated zirconium dioxide for removal of chromate anions from diluted solutions. Mater. Today: Proc. 2019. 6(2): 260. https://doi.org/10.1016/j.matpr.2018.10.103

49. Perlova O., Dzyazko Yu., Halutska I., Perlova N., Palchik A. Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. Springer Proc. Phys. 2018. 210: 3. https://doi.org/10.1007/978-3-319-91083-3_1

50. Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Appl. Nanoscience. 2019. 9(5): 997. https://doi.org/10.1007/s13204-018-0689-9

51. Fan L., Luo C., Li X., Lu F., Qiu H., Sun M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 2012. 215: 272. https://doi.org/10.1016/j.jhazmat.2012.02.068

52. Nguyen-Phan T.-D., Pham V.H., Shin F.W., Pham H.-D., Kim S., Chung J.K., Kim E.J., Hur S.H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011. 170(1): 226. https://doi.org/10.1016/j.cej.2011.03.060

53. Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q,, Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015. 281: 1. https://doi.org/10.1016/j.cej.2015.06.043

54. Seredych M., Teresa J., Bandosz T.J. Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chem. Eng. J. 2011. 166(3): 1032. https://doi.org/10.1016/j.cej.2010.11.096

55. Dzyazko Yu.S., Rozhdestvenskaya L.M., Zmievskii Yu.G, Vilenskii A.I., Myronchuk V.G., Kornienko L.V., Vasilyuk S.V., Tsyba N.G. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res. Lett. 2015. 10: 64. https://doi.org/10.1186/s11671-015-0758-x

56. Sánchez-Bayo F., Goulson D., Pennacchio F., Nazzi F., Goka K., Desneux N. Are bee diseases linked to pesticides? - A brief review. Environ. Int. 2016. 89-90: 7. https://doi.org/10.1016/j.envint.2016.01.009

57. Mew E.M., Padmanathan P., Konradsen F., Eddleston M., Chang S.-S., Phillips M.R., Gunnell D. The global burden of fatal self-poisoning with pesticides 2006-15: Systematic review. J. Affect. Disord. 2017. 219: 93. https://doi.org/10.1016/j.jad.2017.05.002

58. Wood T.J., Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 2017. 24(21): 17285. https://doi.org/10.1007/s11356-017-9240-x

59. Rani M., Shanker U., Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manag. 2017. 190: 208. https://doi.org/10.1016/j.jenvman.2016.12.068

60. State Standard of Ukraine. (DSTU 7312:2013).

61. Interstate Standard (GOST 21.560.2-82). Mineral fertilizers. Method for determination of granules static strength. 

62. Kang Ch., Wang Y., Li R., Du Y., Li J., Zhang B., Zhou L., Du Y. A modified spectrophotometric method for the determination of trace amounts of phenol in water. Microchem. J. 2000. 64(2): 161. https://doi.org/10.1016/S0026-265X(99)00022-3

63. Interstate Standard (GOST 31940-2012). Drinking water. Methods for determination of sulfate content. http://docs.cntd.ru/document/gost-31940-2012

64. Interstate Standard (GOST 31954-2012). Drinking water. Methods of hardness determination. http://docs.cntd.ru/document/1200097815

65. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1991).

66. Leboda R., Mendyk E., Gierak A., Tertykh V.A. Hydrothermal modification of silica gels (xerogels) 2. Effect of the duration of treatment on their porous structure. Colloids Surfaces A. 1995. 105(2-3): 191. https://doi.org/10.1016/0927-7757(95)03272-X

67. Archie G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME. 1942. 146(1): 1. https://doi.org/10.2118/942054-G

68. Rice R.W. Porosity of ceramics. (New York, Basel, Honc Kong, Marcel Dekker, 1998).

69. Rouquerol F., Rouquerol J., Sing H. Adsorption by powders and porous solids. Principles, methodology and application. (London, San Diego: Academic Press, 1999).

70. Dzyazko Yu.S., Palchik O.V., Ogenko V.M., Shtemberg L.Ya., Bogomaz V.I., Protsenko S.A., Khomenko V.G., Makeeva I.S., Chernysh O.V., Dzyazko O.G. Nanoporous biochar for removal of toxic organic compounds from water. Springer Proceedings in Physics. 2019. 222: 209. https://doi.org/10.1007/978-3-030-17755-3_14

71. http://www.pesticidy.ru

72. Goncharuk V.V., Dubrovina L.V., Kucheruk D.D., Samsoni-Todorov A.O., Ogenko V.M., Dubrovin I.V. Water purification of dyes by ceramic membranes modified by pyrocarbon of carbonized polyisocyanate. J. Water Chem. Technol. 2016. 38(1): 34. https://doi.org/10.3103/S1063455X16010069




DOI: https://doi.org/10.15407/hftp10.04.432

Copyright (©) 2019 Yu. S. Dzyazko, V. M. Ogenko, L. Ya. Shteinberg, A. V. Bildуukevich, T. V. Yatsenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.