Chemistry, Physics and Technology of Surface, 2020, 11 (3), 368-377.

Particulate morphology of nanostructured materials



DOI: https://doi.org/10.15407/hftp11.03.368

V. M. Gun'ko, O. I. Oranska, V. V. Paientko, I. Ya. Sulym

Abstract


The aim of this study was to develop a technique to analyze the crystalline and particulate morphology of highly disperse complex metal and metalloid oxides, which include both crystalline and amorphous phases, using X-ray diffraction (XRD) data to compute crystallite size distributions (CSD) compared to the particles size distribution functions estimated from high-resolution transmission electron microscopy (TEM) images treated with specific software. Two versions of the XRD treatment methods were used: (i) full profile analysis (FPA) of whole XRD patterns with a self-consistent regularization (SCR) procedure using models for spherical and lamellar crystallites that allows us to estimate relative contributions of crystallites of different shapes; and (ii) analysis of main pure XRD lines with consideration of corrections on an instrumental line profile and background using a regularization procedure with models of spherical or lamellar crystallites. The XRD and TEM based approaches were tested to analyze the crystalline and particulate morphology of various disperse materials: complex (binary and ternary) fumed oxides with silica/alumina, silica/titania, and alumina/silica/titania including crystalline alumina and titania and amorphous silica; nanocomposites CeO2–ZrO2/SiO2 (10 : 10 : 80 wt.%) and TiO2–ZrO2/SiO2 (10 : 10 : 80 wt.%) including crystalline and amorphous phases and synthesized using a liquid-phase method and fumed silica A–300 as a substrate; and natural clays of complex composition including several crystalline phases. Obtained results show that the developed approaches to analyze the XRD patterns could be effectively used to compute the CSD in parallel with TEM image treatments, using specific software, for a deeper insight into crystalline and particulate morphology of various disperse materials.


Keywords


complex fumed oxides; deposited oxides; clays; particulate morphology; crystallite size distribution

Full Text:

PDF

References


1. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim:Wiley-VCH, 2008).

2. Kulkarni P., Baron P.A., Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. Third Edition. (New York: John Wiley & Sons, 2011). https://doi.org/10.1002/9781118001684

3. Büchel K.H., Moretto H.-H., Woditsch P. Industrial inorganic chemistry. (Weinheim: Wiley-VCH Verlag GmbH, 2000). https://doi.org/10.1002/9783527613328

4. Piemonte V., De Falco M., Basile A. Sustainable Development in Chemical Engineering - Innovative Technologies. First Edition. (UK, Chichester: John Wiley & Sons, 2013). https://doi.org/10.1002/9781118629703

5. Camenzind A., Caseri W.R., Pratsinis S.E. Flame-made nanoparticles for nanocomposites. Nano Today. 2010. 5(1): 48. https://doi.org/10.1016/j.nantod.2009.12.007

6. Fultz B., Howe J. Transmission Electron Microscopy and Diffractometry of Materials. (Berlin: Springer, 2007).

7. Stokes D.J. Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008). https://doi.org/10.1002/9780470758731

8. Sakurai S. SAXS evaluation of size distribution for nanoparticles. Chapter 5 (http://dx.doi.org/10.5772/105981), In A.E. Ares (editor). X-ray Scattering. (Croatia: InTech, 2017). P. 107. https://doi.org/10.5772/65049

9. Brumberger H. Small Angle X-ray Scattering. (New York, Syracuse: Gordon & Breach, 1965).

10. Sztucki M., Narayanan T. Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter. J. Appl. Crystallogr. 2007. 40: s459. https://doi.org/10.1107/S0021889806045833

11. Buschow K.H.J. Encyclopedia of Materials: Science and Technology. (Amsterdam: Elsevier, 2001).

12. Cullity B.D., Stock S.R. Elements of X-Ray Diffraction. Third Edition. (New York: Prentice-Hall Inc., 2001).

13. David W.I.F., Shankland K., McCusker L.B., Baerlocher Ch. Structure Determination form Powder Diffraction Data. (London: Oxford Science, 2002).

14. Hunter R.J. Introduction to Modern Colloid Science. (London: Oxford University Press, 1993).

15. Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91: 1. https://doi.org/10.1016/S0001-8686(99)00026-3

16. Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 317. https://doi.org/10.15407/hftp09.04.317

17. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

18. Guinier A. X-Ray Diffraction. (San Francisco: WH Freeman, 1963).

19. de Avillez R.R., Abrantes F.G., Letichevsky S. On the intrinsic limits of the convolution method to obtain the crystallite size distribution from nanopowders diffraction. Mater. Res. 2018. 21(3): e20170980. https://doi.org/10.1590/1980-5373-mr-2017-0980

20. Popović S., Skoko Ž. X-ray diffraction broadening analysis. Maced. J. Chem. Chem. Eng. 2015. 34(1): 39. https://doi.org/10.20450/mjcce.2015.642

21. Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27(3): 213. https://doi.org/10.1016/0010-4655(82)90173-4

22. Image J. 2020. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html.

23. Gun'ko V.M., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Remez O.S., Skubiszewska-Zięba J., Wojcik G., Walusiak B., Blitz J.P. Nature and morphology of fumed oxides and features of interfacial phenomena. Appl. Surf. Sci. 2016. 366: 410. https://doi.org/10.1016/j.apsusc.2016.01.062

24. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

25. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

26. Sulym I., Sternik D., Oleksenko L., Lutsenko L., Borysenko M., Derylo-Marczewska A. Highly dispersed silica-supported ceria-zirconia nanocomposites: Preparation and characterization. Surf. Interfaces. 2016. 5: 8. https://doi.org/10.1016/j.surfin.2016.08.001

27. Sulym I., Goncharuk O., Skwarek E., Sternik D., Borysenko M.V., Derylo-Marczewska A., Janusz W., Gun'ko V.M. Silica-supported ceria-zirconia and titania-zirconia nanocomposites: Structural characteristics and electrosurface properties. Colloids Surf. A. 2015. 482: 631. https://doi.org/10.1016/j.colsurfa.2015.07.015

28. Sulym I., Goncharuk O., Sternik D., Skwarek E., Derylo-Marczewska A., Janusz W., Gun'ko V.M. Silica-supported titania-zirconia nanocomposites: Structural and morphological characteristics in different media. Nanoscale Res. Lett. 2016. 11(111): 1. https://doi.org/10.1186/s11671-016-1304-1

29. Protsak I., Paientko V.V., Oranska O.I., Gornikov Yu.I., Prokhnenko P.A., Alekseev S.A., Babenko L.M., Liedienov N.A., Pashchenko A.V., Levchenko G.G., Gun'ko V.M. Interfacial phenomena in natural nanostructured materials based on kaolinite and calcite in blends with nanosilica and neem leaf powder. Colloids Surf. A. 2020. 586: 124238. https://doi.org/10.1016/j.colsurfa.2019.124238

30. JCPDS Database, International Center for Diffraction Data, PA, 2001.

31. Gun'ko V.M., Turov V.V., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003

32. Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005




DOI: https://doi.org/10.15407/hftp11.03.368

Copyright (©) 2020 V. M. Gun'ko, O. I. Oranska, V. V. Paientko, I. Ya. Sulym

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.