Chemistry, Physics and Technology of Surface, 2010, 1 (4), 389-400.

Multiwalled Carbon Nanotubes Modified with Biocompatible Compounds



Y. N. Bolbukh, G. S. Gunko, G. P. Prikhod’ko, V. A. Tertykh, K. László, A. Tóth, B. Koczka

Abstract


Oxidized with solution of hydrogen peroxide multiwalled carbon nanotubes (MWCNTs) were modified with 2-hydroxyethylmethacrylate (HEMA) or chitosan (CTS). Morphology and surface properties of the pristine and modified MWCNTs have been investigated. The zeta-potential behaviour of MWCNTs was studied as a function of pH and suspension concentration. After oxidation, the divided nanotubes are found to have uncapped ports decorated with hydroxyl groups mostly. Surface oxygen-containing groups specify the negative zeta-potential in all pH range studied (pH=3-11). The values of zeta-potential display an inverse dependence on the dispersion concentration in acidic and basic solutions. After modification of oxidized MWCNTs with HEMA their isoelectric point is shifted from pH=2 to pH=10. Repeated surface treatment with HEMA (MWCNTs-HEMA-HEMA), along with change of the nature of terminal groups, provides stable surface charge increasing with nanotubes concentration in the pH range of 3-9. The isoelectric point of MWCNTs modified with CTS occurs at pH=4.5. At relatively small zeta-potential values, which become more negative with a decrease in the nanotubes concentration, such suspensions are the most stable.

Full Text:

PDF

References


Reich S., Thomsen S.R.C., Maultzsch J. Carbon Nanotubes: Basic Concepts and Physical Properties. – Weinheim: Wiley-VCH, 2004. – 224 p.

O'Connell M.J. Carbon Nanotubes: Properties and Applications. – Eikos, Franklin, MA: CRC Press, 2006. – 336 p.

Zhu W., Bartos P.J.M., Porro A. Application of nanotechnology in construction. Summary of a state-of-the-art report // Mater. Struct. – 2004. – V. 37, N 9. – P. 649–658.

Liu Y., Tang J., Chen X.Q., Xin J.H. Decoration of carbon nanotubes with chitosan // Carbon. – 2005. – V. 43, N 15. – P.3178–3180.

Iamsamai C., Hannongbuab S., Ruktanonchai U. et al. The effect of the degree of deacetylation of chitosan on its dispersion of carbon nanotubes // Carbon. – 2010. – V. 48, N 1. – P. 25–30.

Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties // Prog. Polym. Sci. – 2010. – V. 35, N 3. – P. 357–401.

Wu Z., Feng W., Feng Y. et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties // Carbon. – 2007. – V. 45, N 6. – P. 1212–1218.

Kumar N.A., Ganapathy H.S., Kim J.S. et al. Preparation of poly-2-hydroxy­ethylmethacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites // Eur. Polym. J. – 2008. – V. 44, N 3. – P. 579–586.

Song W., Zheng Z., Tang W., Wang X. A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer // Polymer. – 2007. – V. 48, N 3. – P. 3658–3663.

Xu R. Progress in nanoparticles characterization: Sizing and zeta potential measurement // Particuology. – 2008. – V. 6, N 2. – P. 112–115.

Sementsov Yu.І., Melezhіk A.V., Prі­khod'ko G.P et al. Synthesis, structure, physіcochemіcal propertіes of carbon nanomaterіals // Physіcs and Chemіstry of Nanomaterіals and Supramolecular Structures / Eds. A.P. Shpak, P.P. Gorbіk. – Kyіv: Naukova Dumka. – 2007. – V. 2. – P. 116–158. (in Russian).

Gunko G.S., Bolbukh Yu.M., Prikhod’ko G.P., Tertykh V.A. Modification of multiwalled carbon nanotubes with acrylates // Chemistry, Physics and Technology of Surface. – 2009. – V. 15. – P. 343–350. (in Ukrainian).

Miyata Y., Maniwa Y., Kataura H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen per­oxide // J. Phys. Chem. B. – 2006. – V. 110, N 1. – P. 25–29.

Sing K.S.W., Everett D.H., Haul R.A.W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity // Pure Appl. Chem. – 1985. – V. 57, N 4. – P. 603–619.

Su F., Lu C., Hu S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes // Colloids Surf. A. – 2010. – V. 353, N 1. – P. 83–91.

Schierz A., Zanker H. Aqueous suspensions of carbon nanotubes: Surface oxidation, colloidal stability and uranium sorption // Environ. Pollut. – 2009. – V. 157. – P. 1088–1094.

Muramatsu H., Hayashi T., Kim Y.A. et al. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper // Chem. Phys. Lett. – 2005. – V. 414, N 14. – P. 444–448.

Li W., Bai Y., Zhang Y. et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes // Synth. Met. – 2005. – V. 155. – P. 509–515.

Jiang H., Zhu L., Moon K.S., Wong C.P. The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production // Carbon. – 2007. – V. 45. – P. 655–661.

Sham M.L., Kim J.K. Surface functionalities of multi-wall carbon nanotubes after UV/ozone and TETA treatments // Carbon. – 2006. – V. 44, N 4. – P. 768–777.

Song H.J., Zhang Z.Z., Men X.H. Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating // Eur. Polym. J. – 2007. – V. 43, N 10. – P. 4092–4102.

SanjohaA., Tsukiharaa T., Gorti S. Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening // J. Cryst. Growth. – 2001. – V. 232, N 1–4. – P. 618–628.

Kim B., Park H., Sigmund W.M. Rheological behaviour of multiwall carbon nanotubes with polyelectrolyte dispersants // Colloids Surf. A. – 2005. – V. 256. – P. 123–127.

Fogden S., Verdejo R., Cottam B., Shaffer M. Purification of single walled carbon nanotubes: The problem with oxidation debris // Chem. Phys. Lett. – 2008. – V. 460. – P. 162–167.

Lu C., Chiu H. Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution // Chem. Eng. J. – 2008. – V. 139, N 3. – P. 462–468.

Liu Y., Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes // Carbon. – 2005. – V. 43, N 1. – P. 47–52.

Zhao L.P., Gao L. Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol // Colloids Surf. A. – 2003. – V. 224, N 1–3. – P. 127–134.

Li Y.-H., Wang S., Luan Z. et al. A adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes // Carbon. – 2003. – V. 41, N 5. – P. 1057–1062.

Boccaccini A.R., Cho J., Roether J.A. et al. Electrophoretic deposition of carbon nanotubes // Carbon. – 2006. – V. 44, N 15. – P. 3149–3160.

Li C.-C., Huang C.-L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents // Colloids Surf. A. – 2010. – V. 353, N 1. – P. 52–56.

Jiang T., Xu K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation // Carbon. – 1995. – V. 33, N 12. – P. 1663–1671.

Mitev D., Dimitrova R., Spassova M. et al. Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods // Diamond Relat. Mater. – 2007. – V. 16. – P. 776–780.

White B., Banerjee S., O’Brien S. et al. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes // J. Phys. Chem. C. – 2007. – V. 111. – P. 13684–13690.

Wang S.-F., Shen L., Zhang W.-D., Tong Y.-J. Preparation and mechanical properties of chitosan/carbon nanotubes composites // Biomacromolecules. – 2005. – V. 6, N 6. – P. 3067–3072.

Zhang J., Wang Q., Wang L., Wang A. Manipulated dispersion of carbon nanotubes with derivatives of chitosan // Carbon. – 2007. – V. 45, N 9. – P. 1911–1914.

Wei B., Guan P., Zhang L., Chen G. Solubilization of carbon nanotubes by cellulose xanthate toward the fabrication of enhanced amperometric detectors // Carbon. – 2010. – V. 48, N 5. – P. 1380–1387.




Copyright (©) 2010 Y. N. Bolbukh, G. S. Gunko, G. P. Prikhod’ko, V. A. Tertykh, K. László, A. Tóth, B. Koczka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.