Chemistry, Physics and Technology of Surface, 2021, 12 (3), 201-215.

The effect of microwave irradiation on the synthesis of hydroxyapatite/biopolymer nanocomposites



DOI: https://doi.org/10.15407/hftp12.03.201

M. O. Kumeda, L. F. Sukhodub

Abstract


Microwave irradiation (MWI) in the synthesis of materials has been an actively developing branch of science for the last three decades. Structures based on calcium phosphates (CaP) are one of the most well-known and widely used synthetic biomaterials in orthopedics and dentistry. The main topic of this review is the use of MWI in the formation of biomaterials based on calcium phosphate phases and their complexes with biopolymers (chitosan, alginate, silk fibroin). The physical bases of MW interaction with different materials are considered, including the influence of this irradiation on the structure, physicochemical and mechanical properties of biomaterials (crystallite size, porosity, strength, capability to absorb and release drugs). The main heating mechanisms during MWI are described, namely: the dipolar losses, and losses of conductivity. Important advantages of MWI treatment are reducing processing time, reducing electricity use, reducing waste and improving quality of the synthesized biomaterials. A list and comparison is made of articles describing the production of HA crystals with different morphology (nanowires, spherical, needle- and rod-shaped) with all the initial conditions and their effect on the synthesized material. The latest developments in the field of biomaterials conducted based on the laboratory “Bionanocomposite” of Sumy State University are considered. The original synthesis method of CaP-biopolymer materials is described, as well as the advantages of the synthesized scaffolds over foreign developments. It is expected that this review of the interdisciplinary topic will contribute to the further study of other new applications of microwave technologies in the synthesis of the latest modern biomaterials created by scientists, biomedical engineers in other laboratories and institutions in Ukraine and around the world.


Keywords


microwave irradiation; calcium orthophosphates; hydroxyapatite; biopolymers

Full Text:

PDF (Українська)

References


Kitchen H.J., Vallance S.R., Kennedy J.L., Tapia-Ruiz N., Carassiti L., Harrison A., Whittaker A.G., Drysdale T.D., Kingman S.W., Gregory D.H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2014. 114(2): 1170. https://doi.org/10.1021/cr4002353

Mishra R.R., Sharma A.K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites, Part A. 2016. 81: 78. https://doi.org/10.1016/j.compositesa.2015.10.035

Kumar Singh M., Verma N., Kumar R., Zafar S., Pathak H. Microwave processing of polymer composites. In: Advanced Welding and Deforming. (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-822049-8.00013-X

Blackwell H.E. Out of the oil bath and into the oven - microwave-assisted combinatorial chemistry heats up. Org. Biomol. Chem. 2003. 1(8): 1251. https://doi.org/10.1039/b301432k

de la Hoz A., Díaz-Ortiz Á., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005. 34(2): 164. https://doi.org/10.1039/B411438H

Stanislavov A.S., Sukhodub L.F., Sukhodub L.B., Kuznetsov V.N., Bychkov K.L., Kravchenko M.I. Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials. Ultrason. Sonochem. 2018. 42: 84. https://doi.org/10.1016/j.ultsonch.2017.11.011

Palaith D., Silberglitt R. Microwave joining of ceramics. Am. Ceram. Soc. Bull. 1989. 69(9): 1601.

Mijović J., Wijaya J. Review of cure of polymers and composites by microwave energy. Polym. Compos. 1990. 11(3): 184. https://doi.org/10.1002/pc.750110307

Thostenson E.T., Chou T.-W. Microwave processing: fundamentals and applications. Composites, Part A. 1999. 30(9): 1055. https://doi.org/10.1016/S1359-835X(99)00020-2

Roussy G., Pierce J. Foundations and industrial applications of microwave and radio frequency fields. (New York: Wiley, 1995).

Sikder P., Ren Y., Bhaduri S.B. Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review. Acta Biomater. 2020. 111: 29. https://doi.org/10.1016/j.actbio.2020.05.018

Sukhodub L.F., Yanovska G.O., Sukhodub L.B., Kuznetsov V.M., Stanislavov O.S. Nanocomposite Apatite-Biopolymer Materials and Coatings for Biomedical Applications. J. Nano- Electron Phys. 2014. 6(1): 01001.

Yu H.-P., Zhu Y.-J., Lu B.-Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram. Int. 2018. 44(11): 12352. https://doi.org/10.1016/j.ceramint.2018.04.022

Sukhodub L.B., Kumeda M.O., Sukhodub L.F. Influence of MW Irradiation on the Hydroxyapatite/Chitosan Composite Structure and Drug Release Kinetics. In: 4th International Conference on Nanotechnologies and Biomedical Engineering. 2020. P. 343. https://doi.org/10.1007/978-3-030-31866-6_64

Apalangya V., Rangari V., Jeelani S., Dankyi E., Yaya A., Darko S. Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles. Ceram. Int. 2018. 44(6): 7165. https://doi.org/10.1016/j.ceramint.2018.01.161

Babaie E., Ren Y., Bhaduri S.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. J. Mater. Res. 2016. 31(8): 1. https://doi.org/10.1557/jmr.2016.84

Ramesh S., Tan C.Y., Bhaduri S.B., Teng W.D., Sopyan I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process Technol. 2008. 206(1-3): 221. https://doi.org/10.1016/j.jmatprotec.2007.12.027

Pogrebnjak A., Sukhodub L., Sukhodub L., Bondar O., Kumeda M., Shaimardanova B., Shaimardanov Z., Turlybekuly A. Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles. Ceram. Int. 2019. 45(6): 7504. https://doi.org/10.1016/j.ceramint.2019.01.043

Hassan M.N., Mahmoud M.M., El-Fattah A.A., Kandil S. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram. Int. 2016. 42(3): 3725. https://doi.org/10.1016/j.ceramint.2015.11.044

Liu J., Li K., Wang H., Zhu M., Xu H., Yan H. Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology. 2005. 16(1): 82. https://doi.org/10.1088/0957-4484/16/1/017

Siddharthan A., Seshadri S., Kumar T. Influence of microwave power on nanosized hydroxyapatite particles. Scr. Mater. 2006. 55(2): 175. https://doi.org/10.1016/j.scriptamat.2006.03.044

Arami H., Mohajerani M., Mazloumi M., Khalifehzadeh R., Lak A., Sadrnezhaad S.K. Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J. Alloys Compd. 2009. 469(1-2): 391. https://doi.org/10.1016/j.jallcom.2008.01.116

Yu H.-P., Zhu Y.-J., Lu B.-Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram. Int. 2018. 44(11): 3725. https://doi.org/10.1016/j.ceramint.2018.04.022

Türk S., Altınsoy İ., ÇelebiEfe G., Ipek M., Özacar M., Bindal C. Microwave-assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater. Sci. Eng. C. 2017. 76: 528. https://doi.org/10.1016/j.msec.2017.03.116

Abutalib M.M., Yahia I.S. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity. Mater. Sci. Eng. C. 2017. 78: 1093. https://doi.org/10.1016/j.msec.2017.04.131

Alshemary A.Z., Akram M., Goh Y.-F., Abdul Kadir M.R., Abdolahi A., Hussain R. Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J. Alloys Compd. 2015. 645: 478. https://doi.org/10.1016/j.jallcom.2015.05.064

Badran H., Yahia I.S., Hamdy M.S., Awwad N.S. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties. Radiat. Phys. Chem. 2017. 130: 85. https://doi.org/10.1016/j.radphyschem.2016.08.001

Kheradmandfard M., Mahdavi K., Zargar Kharazi A., Kashani-Bozorg S.F., Kim D.-E. In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Mater. Sci. Eng. C. 2020. 117: 111310. https://doi.org/10.1016/j.msec.2020.111310

Chen J., Liu J., Deng H., Yao S., Wang Y. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceram. Int. 2020. 46(2): 2185. https://doi.org/10.1016/j.ceramint.2019.09.203

Kalaiselvi V., Mathammal R., Vijayakumar S., Vaseeharan B. Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. Int. J. Vet. Sci. Med. 2018. 6(2): 286. https://doi.org/10.1016/j.ijvsm.2018.08.003

Tolga Demirtaş T., Kaynak G., Gümüşderelioğlu M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater. Sci. Eng. C. 2015. 49: 713. https://doi.org/10.1016/j.msec.2015.01.057

Changsheng Liu., Hongyan He. Developments and Applications of Calcium Phosphate Bone Cement. (Singapore Pte Ltd: Springer Nature, 2018).

Gopi D., Nithiya S., Shinyjoy E., Kavitha L. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications. Spectrochim. Acta, Part A. 2012. 92: 194. https://doi.org/10.1016/j.saa.2012.02.069

Ghorbani F., Zamanian A., Behnamghader A., Daliri-Joupari M. Bone-like hydroxyapatite mineralization on the bio-inspired PDA nanoparticles using microwave irradiation. Surf. Interfaces. 2019. 15: 708. https://doi.org/10.1016/j.surfin.2019.01.007

Kaynak Bayrak G., Demirtaş T.T., Gümüşderelioğlu M. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohydr. Polym. 2017. 157: 803. https://doi.org/10.1016/j.carbpol.2016.10.016

Shao Y.-F., Qing X., Peng Y., Wang H., Shao Z., Zhang K.-Q. Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy. Colloids Surf., B. 2021. 197: 111401. https://doi.org/10.1016/j.colsurfb.2020.111401

Collins A.M., Skaer N.J.V., Gheysens T., Knight D., Bertram C., Roach H.I., Oreffo R.O.C., Von-Aulock S., Baris T., Skinner J., Mann S. Bone-like Resorbable Silk-based Scaffolds for Load-bearing Osteoregenerative Applications. Adv. Mater. 2009. 21(1): 75. https://doi.org/10.1002/adma.200802239

Sukhodub L.B., Sukhodub L.F., Kumeda M.O., Prylutska S.V., Deineka V., Prylutskyy Y.I., Ritter U. C60 fullerene loaded hydroxyapatite-chitosan beads as a promising system for prolonged drug release. Carbohydr. Polym. 2019. 223: 115067. https://doi.org/10.1016/j.carbpol.2019.115067




DOI: https://doi.org/10.15407/hftp12.03.201

Copyright (©) 2021 M. O. Kumeda, L. F. Sukhodub

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.