The effect of microwave irradiation on the synthesis of hydroxyapatite/biopolymer nanocomposites
DOI: https://doi.org/10.15407/hftp12.03.201
Abstract
Microwave irradiation (MWI) in the synthesis of materials has been an actively developing branch of science for the last three decades. Structures based on calcium phosphates (CaP) are one of the most well-known and widely used synthetic biomaterials in orthopedics and dentistry. The main topic of this review is the use of MWI in the formation of biomaterials based on calcium phosphate phases and their complexes with biopolymers (chitosan, alginate, silk fibroin). The physical bases of MW interaction with different materials are considered, including the influence of this irradiation on the structure, physicochemical and mechanical properties of biomaterials (crystallite size, porosity, strength, capability to absorb and release drugs). The main heating mechanisms during MWI are described, namely: the dipolar losses, and losses of conductivity. Important advantages of MWI treatment are reducing processing time, reducing electricity use, reducing waste and improving quality of the synthesized biomaterials. A list and comparison is made of articles describing the production of HA crystals with different morphology (nanowires, spherical, needle- and rod-shaped) with all the initial conditions and their effect on the synthesized material. The latest developments in the field of biomaterials conducted based on the laboratory “Bionanocomposite” of Sumy State University are considered. The original synthesis method of CaP-biopolymer materials is described, as well as the advantages of the synthesized scaffolds over foreign developments. It is expected that this review of the interdisciplinary topic will contribute to the further study of other new applications of microwave technologies in the synthesis of the latest modern biomaterials created by scientists, biomedical engineers in other laboratories and institutions in Ukraine and around the world.
Keywords
References
Kitchen H.J., Vallance S.R., Kennedy J.L., Tapia-Ruiz N., Carassiti L., Harrison A., Whittaker A.G., Drysdale T.D., Kingman S.W., Gregory D.H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2014. 114(2): 1170. https://doi.org/10.1021/cr4002353
Mishra R.R., Sharma A.K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites, Part A. 2016. 81: 78. https://doi.org/10.1016/j.compositesa.2015.10.035
Kumar Singh M., Verma N., Kumar R., Zafar S., Pathak H. Microwave processing of polymer composites. In: Advanced Welding and Deforming. (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-822049-8.00013-X
Blackwell H.E. Out of the oil bath and into the oven - microwave-assisted combinatorial chemistry heats up. Org. Biomol. Chem. 2003. 1(8): 1251. https://doi.org/10.1039/b301432k
de la Hoz A., Díaz-Ortiz Á., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005. 34(2): 164. https://doi.org/10.1039/B411438H
Stanislavov A.S., Sukhodub L.F., Sukhodub L.B., Kuznetsov V.N., Bychkov K.L., Kravchenko M.I. Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials. Ultrason. Sonochem. 2018. 42: 84. https://doi.org/10.1016/j.ultsonch.2017.11.011
Palaith D., Silberglitt R. Microwave joining of ceramics. Am. Ceram. Soc. Bull. 1989. 69(9): 1601.
Mijović J., Wijaya J. Review of cure of polymers and composites by microwave energy. Polym. Compos. 1990. 11(3): 184. https://doi.org/10.1002/pc.750110307
Thostenson E.T., Chou T.-W. Microwave processing: fundamentals and applications. Composites, Part A. 1999. 30(9): 1055. https://doi.org/10.1016/S1359-835X(99)00020-2
Roussy G., Pierce J. Foundations and industrial applications of microwave and radio frequency fields. (New York: Wiley, 1995).
Sikder P., Ren Y., Bhaduri S.B. Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review. Acta Biomater. 2020. 111: 29. https://doi.org/10.1016/j.actbio.2020.05.018
Sukhodub L.F., Yanovska G.O., Sukhodub L.B., Kuznetsov V.M., Stanislavov O.S. Nanocomposite Apatite-Biopolymer Materials and Coatings for Biomedical Applications. J. Nano- Electron Phys. 2014. 6(1): 01001.
Yu H.-P., Zhu Y.-J., Lu B.-Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram. Int. 2018. 44(11): 12352. https://doi.org/10.1016/j.ceramint.2018.04.022
Sukhodub L.B., Kumeda M.O., Sukhodub L.F. Influence of MW Irradiation on the Hydroxyapatite/Chitosan Composite Structure and Drug Release Kinetics. In: 4th International Conference on Nanotechnologies and Biomedical Engineering. 2020. P. 343. https://doi.org/10.1007/978-3-030-31866-6_64
Apalangya V., Rangari V., Jeelani S., Dankyi E., Yaya A., Darko S. Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles. Ceram. Int. 2018. 44(6): 7165. https://doi.org/10.1016/j.ceramint.2018.01.161
Babaie E., Ren Y., Bhaduri S.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. J. Mater. Res. 2016. 31(8): 1. https://doi.org/10.1557/jmr.2016.84
Ramesh S., Tan C.Y., Bhaduri S.B., Teng W.D., Sopyan I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process Technol. 2008. 206(1-3): 221. https://doi.org/10.1016/j.jmatprotec.2007.12.027
Pogrebnjak A., Sukhodub L., Sukhodub L., Bondar O., Kumeda M., Shaimardanova B., Shaimardanov Z., Turlybekuly A. Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles. Ceram. Int. 2019. 45(6): 7504. https://doi.org/10.1016/j.ceramint.2019.01.043
Hassan M.N., Mahmoud M.M., El-Fattah A.A., Kandil S. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram. Int. 2016. 42(3): 3725. https://doi.org/10.1016/j.ceramint.2015.11.044
Liu J., Li K., Wang H., Zhu M., Xu H., Yan H. Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology. 2005. 16(1): 82. https://doi.org/10.1088/0957-4484/16/1/017
Siddharthan A., Seshadri S., Kumar T. Influence of microwave power on nanosized hydroxyapatite particles. Scr. Mater. 2006. 55(2): 175. https://doi.org/10.1016/j.scriptamat.2006.03.044
Arami H., Mohajerani M., Mazloumi M., Khalifehzadeh R., Lak A., Sadrnezhaad S.K. Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J. Alloys Compd. 2009. 469(1-2): 391. https://doi.org/10.1016/j.jallcom.2008.01.116
Yu H.-P., Zhu Y.-J., Lu B.-Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram. Int. 2018. 44(11): 3725. https://doi.org/10.1016/j.ceramint.2018.04.022
Türk S., Altınsoy İ., ÇelebiEfe G., Ipek M., Özacar M., Bindal C. Microwave-assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater. Sci. Eng. C. 2017. 76: 528. https://doi.org/10.1016/j.msec.2017.03.116
Abutalib M.M., Yahia I.S. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity. Mater. Sci. Eng. C. 2017. 78: 1093. https://doi.org/10.1016/j.msec.2017.04.131
Alshemary A.Z., Akram M., Goh Y.-F., Abdul Kadir M.R., Abdolahi A., Hussain R. Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J. Alloys Compd. 2015. 645: 478. https://doi.org/10.1016/j.jallcom.2015.05.064
Badran H., Yahia I.S., Hamdy M.S., Awwad N.S. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties. Radiat. Phys. Chem. 2017. 130: 85. https://doi.org/10.1016/j.radphyschem.2016.08.001
Kheradmandfard M., Mahdavi K., Zargar Kharazi A., Kashani-Bozorg S.F., Kim D.-E. In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Mater. Sci. Eng. C. 2020. 117: 111310. https://doi.org/10.1016/j.msec.2020.111310
Chen J., Liu J., Deng H., Yao S., Wang Y. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceram. Int. 2020. 46(2): 2185. https://doi.org/10.1016/j.ceramint.2019.09.203
Kalaiselvi V., Mathammal R., Vijayakumar S., Vaseeharan B. Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. Int. J. Vet. Sci. Med. 2018. 6(2): 286. https://doi.org/10.1016/j.ijvsm.2018.08.003
Tolga Demirtaş T., Kaynak G., Gümüşderelioğlu M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater. Sci. Eng. C. 2015. 49: 713. https://doi.org/10.1016/j.msec.2015.01.057
Changsheng Liu., Hongyan He. Developments and Applications of Calcium Phosphate Bone Cement. (Singapore Pte Ltd: Springer Nature, 2018).
Gopi D., Nithiya S., Shinyjoy E., Kavitha L. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications. Spectrochim. Acta, Part A. 2012. 92: 194. https://doi.org/10.1016/j.saa.2012.02.069
Ghorbani F., Zamanian A., Behnamghader A., Daliri-Joupari M. Bone-like hydroxyapatite mineralization on the bio-inspired PDA nanoparticles using microwave irradiation. Surf. Interfaces. 2019. 15: 708. https://doi.org/10.1016/j.surfin.2019.01.007
Kaynak Bayrak G., Demirtaş T.T., Gümüşderelioğlu M. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohydr. Polym. 2017. 157: 803. https://doi.org/10.1016/j.carbpol.2016.10.016
Shao Y.-F., Qing X., Peng Y., Wang H., Shao Z., Zhang K.-Q. Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy. Colloids Surf., B. 2021. 197: 111401. https://doi.org/10.1016/j.colsurfb.2020.111401
Collins A.M., Skaer N.J.V., Gheysens T., Knight D., Bertram C., Roach H.I., Oreffo R.O.C., Von-Aulock S., Baris T., Skinner J., Mann S. Bone-like Resorbable Silk-based Scaffolds for Load-bearing Osteoregenerative Applications. Adv. Mater. 2009. 21(1): 75. https://doi.org/10.1002/adma.200802239
Sukhodub L.B., Sukhodub L.F., Kumeda M.O., Prylutska S.V., Deineka V., Prylutskyy Y.I., Ritter U. C60 fullerene loaded hydroxyapatite-chitosan beads as a promising system for prolonged drug release. Carbohydr. Polym. 2019. 223: 115067. https://doi.org/10.1016/j.carbpol.2019.115067
DOI: https://doi.org/10.15407/hftp12.03.201
Copyright (©) 2021 M. O. Kumeda, L. F. Sukhodub
This work is licensed under a Creative Commons Attribution 4.0 International License.