Quantum chemical modeling of the structure and properties of SnO2 nanoclusters
DOI: https://doi.org/10.15407/hftp12.04.283
Abstract
By the method of density functional theory with exchange-correlation functional B3LYP and basis set 3‑21G (d), the structural and energy characteristics have been considered of the molecular models of SnO2 nanoclusters of different size and composition with the number of Sn atoms from 1 to 10. Incompletely coordinated surface tin atoms were terminated by hydroxyl groups. It has been shown that the Sn–O bond length in nanoclusters does not depend on the cluster size and on the coordination number of Sn atoms, but is determined by the coordination type of neighboring oxygen atoms. Namely, the bond length Sn–O(3) (@ 2.10 Å) is greater than that of Sn–O (2) (@ 1.98 Å). The calculated values of Sn–O (3) bond lengths agree well with the experimental ones for crystalline SnO 2 samples (2.05 Å). The theoretically calculated width of the energy gap decreases naturally with increasing cluster size (from 6.14 to 3.46 eV) and approaches the experimental value of the band gap of the SnO 2 crystal (3.6 eV). The principle of additivity was used to analyze the energy characteristics of the considered models and to estimate the corresponding values for a cassiterite crystal. According to this principle, a molecular model can be represented as a set of atoms or atomic groups of several types that differ in the coordination environment and, therefore, make different contributions to the total energy of the system. The calculated value of the atomization energy for SnO2 is 1661 kJ/mol and corresponds satisfactorily to the experimentally measured specific atomization energy of crystalline SnO2 (1381 kJ/mol). It has been shown that a satisfactory reproduction of the experimental characteristics of crystalline tin dioxide is possible when using clusters containing at least 10 state atoms, for example, (SnO2)10×14H2O.
Keywords
References
1. Batzill M., Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005. 79(2-4): 47. https://doi.org/10.1016/j.progsurf.2005.09.002
2. Mallika C., Edwin Suresh Raj A.M., Nagaraja K.S., Sreedharan O.M. Use of SnO for the determination of standard Gibbs energy of formation of SnO2 by oxide electrolyte e.m.f. measurements. Thermochim. Acta. 2001. 371(1-2): 95. https://doi.org/10.1016/S0040-6031(01)00416-6
3. Tin Oxide Materials. Synthesis, Properties, and Applications. (Elsevier Inc., 2020).
4. Sidorenko T.V., Poluyanska V.V. Tin dioxide: structure, properties, applications and prospects for further study of its capillary properties. Adhesion of melts and soldering of mater. 2015. 48: 15. [in Ukrainian].
5. Sanon G., Rup R., Mansingh A. Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Phys. Rev. B. Condens Matter. 1991. 44(11): 5672. https://doi.org/10.1103/PhysRevB.44.5672
6. Tan L., Wang L., Wang Y. Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J. Nanomater. 2011. 2011(23): 1. https://doi.org/10.1155/2011/529874
7. Zheleznyak A.R., Bakalinskaya O.M., Brychka A.V., Kalenyuk G.O., Kartel M.T. Properties, methods of obtaining and applying nanoxide of stanum. Surface. 2020. 12(27): 193. [in Ukrainian]. https://doi.org/10.15407/Surface.2020.12.193
8. Das S., Jayaraman V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014. 66: 112. https://doi.org/10.1016/j.pmatsci.2014.06.003
9. Yang J.W., Cho H.J., Lee S.H., Lee J.Y. Characterization of SnO2 ceramic gas sensor for exhaust gas monitoring of SVE process. Environ. Monit. Assess. 2004. 92(1-3): 153. https://doi.org/10.1023/B:EMAS.0000014500.49791.77
10. Suman P.H., Felix A.A., Tuller H.L., Varela J.A., Orlandi M.O. Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors Actuators B Chem. 2015. 208: 122. https://doi.org/10.1016/j.snb.2014.10.119
11. Lee S.-Y., Park K.-Y., Kim W.-S., Yoon S., Hong S.-H., Kang K., Kim M. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy. 2016. 19: 234. https://doi.org/10.1016/j.nanoen.2015.10.026
12. Odani A., Nimberger A., Markovsky B., Sominski E., Levi E., Kumar V.G. Development and testing of nanomaterials for rechargeable lithium batteries. J. Power Sources. 2003. 119-121: 517. https://doi.org/10.1016/S0378-7753(03)00276-3
13. Xu X., Zhang R., Zeng X., Han X., Li Y., Liu Y., Wang X. Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation. Chem. Cat. Chem. 2013. 5(7): 2025. https://doi.org/10.1002/cctc.201200760
14. Liberkova K., Touroude R. Performance of Pt/SnO2 catalyst in the gas phase hydrogenation of crotonaldehyde. J. Mol. Catal. A Chem. 2002 180(1): 221. https://doi.org/10.1016/S1381-1169(01)00439-3
15. Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar S.B., Ravishankar R. Mesoporous tin oxide: an efficient catalyst with versatile applications in acid and oxidation catalysis. Catal. Today. 2018. 309: 61. https://doi.org/10.1016/j.cattod.2017.10.009
16. Ray S., Dutta J., Barua A.K. Bilayer SnO2: In/SnO2 thin films as transparent electrodes of amorphous silicon solar cells. Thin Solid Films. 1991. 199(2): 201. https://doi.org/10.1016/0040-6090(91)90001-E
17. Tran V.-H., Ambade R.B., Ambade S.B., Lee S.-H., Lee I.-H. Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces. 2017. 9(2): 1645. https://doi.org/10.1021/acsami.6b10857
18. Valitova I., Natile M.M., Soavi F., Santato C., Cicoira F. Tin dioxide electrolyte-gated transistors working in depletion and enhancement modes. ACS Appl. Mater. Interfaces. 2017. 9(42): 37013. https://doi.org/10.1021/acsami.7b09912
19. Granqvist C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells. 2007. 91(17): 1529. https://doi.org/10.1016/j.solmat.2007.04.031
20. Luo S., Fan J., Liu W., Zhang M., Song Z., Lin C., Wu X., Chu P.K. Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology. 2006. 17(6): 1695. https://doi.org/10.1088/0957-4484/17/6/025
21. Jin Z., Fei G.T., Cao X.L., Wang X.W. Fabrication and optical properties of mesoporous SnO2 nanowire arrays. J. Nanosci. Nanotechnol. 2010. 10(8): 5471. https://doi.org/10.1166/jnn.2010.1949
22. Zhang Z., Gao J., Wong L.M., Tao J.G., Liao L., Zheng Z., Xing G.Z., Peng H.Y., Yu T., Shen Z.X., Huan C.H., Wang S.J., Wu T. Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts. Nanotechnology. 2009. 20(13): 135605. https://doi.org/10.1088/0957-4484/20/13/135605
23. Nagirnyak S.V. Ph.D (Technology of inorganic substances) Thesis. (Kyiv, 2018). [in Ukrainian].
24. Sauer J. Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts. Chem. Rev. 1989. 89 (1): 199. https://doi.org/10.1021/cr00091a006
25. Oviedo J., Gillan M.J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 2000. 463(2): 93. https://doi.org/10.1016/S0039-6028(00)00612-9
26. Hong S.-N., Kye Y.-H., Yu C.-J., Jong U.-G., Ri G.-C., Choe C.-S., Han J.-M. Ab initio thermodynamic study of the SnO2 (110) surface in an O2 and NO environment: a fundamental understanding of the gas sensing mechanism for NO and NO2. Phys. Chem. Chem. Phys. 2016. 18(46): 31566. https://doi.org/10.1039/C6CP05433A
27. Agamalyan M.A., Hunanyan A.A., Harutyunyan V.M., Aleksanyan M.S., Sayunts A.G., Zakaryan A.A. Studies of the interaction of H2O2 with the SnO2 (110) surface from first principles. Izvestia of the National Academy of Sciences of Armenia, Phys. 2020. 55(3): 358. [in Russian]. https://doi.org/10.3103/S1068337220030020
28. Korotcenkov G., Golovanov V., Brinzari V., Cornet A., Morante J., Ivanov M. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications. J. Phys. 2005. 15(1): 256. https://doi.org/10.1088/1742-6596/15/1/043
29. Kılıç C., Zunger A. Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 2002. 88(9): 95. https://doi.org/10.1103/PhysRevLett.88.095501
30. Sensato F.R., Filho O.T., Longo E., Sambrano J.R., Andres J. Theoretical analysis of the energy levels indused by oxygen vacancies and the doping process (Co, Cu and Zn) on SnO2 (110) surface models. J. Mol. Struct. 2001. 541(1-3): 69. https://doi.org/10.1016/S0166-1280(00)00731-4
31. Abdulsattar M.A., Abed H.H., Jabbar R.H., Almaroof N.M. Effect of formaldehyde properties on SnO2 clusters gas sensitivity: A DFT study. J. Mol. Graphics Modell. 2021. 102: 107791. https://doi.org/10.1016/j.jmgm.2020.107791
32. Zhao Z., Li Z. First-principle calculations on the structures and electronic properties of the CO-adsorbed (SnO2)2 clusters. Struct. Chem. 2020. 31(5): 1861. https://doi.org/10.1007/s11224-020-01554-4
33. Ducere J.-M., Hemeryck A., Esteve A., Rouhani M.D., Landa G., Menini P., Tropis C., Maisonnat A., Fau P., Chaudret B. A Computational chemist approach to gas sensors: modeling the response of SnO2 to CO, O2, and H2O gases. J. Comput. Chem. 2011. 33(3): 247. https://doi.org/10.1002/jcc.21959
34. Tingting S., Fuchun Z., Weihu Z. Density functional theory study on the electronic structure and optical properties of SnO2. Rare Metal Materials and Engineering. 2015. 44(10): 2409. https://doi.org/10.1016/S1875-5372(16)30031-5
35. Muscat J., Wander A., Harrison N.M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 2001. 342(3-4): 397. https://doi.org/10.1016/S0009-2614(01)00616-9
36. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992. 45(23): 13244. https://doi.org/10.1103/PhysRevB.45.13244
37. Lee C., Yang R.G., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785
38. Cohen N., Benson S.W. Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev. 1993. 93(7): 2419. https://doi.org/10.1021/cr00023a005
39. Grebenyuk A.G., Zaets V.A., Gorlov Yu.I. Application of the MINDO/3 and MNDO methods to the calculation of the enthalpy of formation of solids. Ukrainian Chemistry Journal. 1995. 61(9): 23.
40. Reznitsky L.A. Chemical bond and transformation of oxides. (Moscow: Publishing house of Moscow State University, 1991).
DOI: https://doi.org/10.15407/hftp12.04.283
Copyright (©) 2021 O. V. Filonenko, A. G. Grebenyuk, V. V. Lobanov
This work is licensed under a Creative Commons Attribution 4.0 International License.