Peculiarities of synthesis and bactericidal properties of nanosilver in colloidal solutions, SiO2 films and in the textile structure: a review
DOI: https://doi.org/10.15407/hftp12.04.326
Abstract
The aim of this work is a comparative analysis of the biocidal efficiency of Ag nanoparticles (NPs) in the colloidal state, in the structure of films and dispersions of SiO2 and in the composition of textile fabrics, dependent on the method of synthesis, based on literature data and on own researches. Chemical reduction of silver (with borohydrides, hydrogen, hydrazine, etc.) allows one to adjust and control the size and shape of NPs. The shape of the NPs is mostly spherical, what is confirmed by the presence of a band of surface plasmon resonance in absorption spectra and by electron microscopy measurements. To prevent aggregation of NPs obtained by the method of chemical reduction in solution, the optimal ratio of two stabilizers based on surfactants and polymer at their minimum concentration was found, namely NaBH4 as a reductant and polyvinylpyrrolidone + sodium dodecyl sulfate as binary stabilizer of Ag NPs, with bactericidal activity of 99 % and stability for more than 3 years. Chemical reduction of silver ions was carried out also by the amino acid tryptophan (Trp) which has a dual function – a biocompatible reducing agent and stabilizer of silver NPs while maintaining their shape, size and stability for long-term use.
Effective methods of photochemical synthesis of Ag NPs have been developed in different ways: by UV irradiation of Ag+ ions in solution in the presence of solid-state photosensitizer SiO2 with adsorbed benzophenone (SiO2/BPh); by UV irradiation of Ag+ ions in solution in the presence of the amino acid tryptophan (Trp); on silica surface when Ag/SiO2 sol-gel films production via irradiation of adsorbed Ag+ ions on SiO2 film (Ag+/SiO2) in the BPh solution. It is shown that when Ag NPs are adsorbed on the surface of highly dispersed SiO2, the logarithm of the reduction of microorganisms reduces and the time of their deactivation increases.
A cheap and convenient way to modify of cotton textiles with Ag NPs by soft heat treatment of Ag+/cotton samples with high (90–95 %) efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing has been developed. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours and the number of irreversibly bound particles have been studied. The electrical resistance of the tissue is proportional to the quantity of NPs. That is NPs in the structure are in different degrees of binding, a certain part of them is retained (adsorbed) irreversibly, saving bactericidal properties after repeated contacts with water. On the basis of literature analysis it is shown that ecologically safe “green synthesis” is a promising way to silver NPs produce with pronounced bactericidal efficiency, which is becoming more common due to the large resource of cheap plant raw materials.
Keywords
References
1. Edwards B. Silver nanoparticles. Advances in research and application. (New York: Nova Science Publishers, 2017).
2. Zille A., Almeida L., Amorim T., Carneiro N., Esteves M.F., Silva C.J., Souto A.P. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater. Res. Express. 2014. 1(3): 32003. https://doi.org/10.1088/2053-1591/1/3/032003
3. Marambio-Jones C., Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010. 12: 1531. https://doi.org/10.1007/s11051-010-9900-y
4. Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., Silva A.M., Durazzo A., Santini A., Garcia M.L., Souto E.B. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020. 10(2): 292. https://doi.org/10.3390/nano10020292
5. Bukina Yu.A., Sergeeva E.A. Antibacterial properties and mechanism of bactericidal action of silver nanoparticles and ions. Bulletin of the Kazan Technological University. 2012. 14:170. [in Russian].
6. Holler J.S., Nordberg G.F., Fowler B.A. Handbook on the Toxicology of Metals. (Amsterdam: Elsevier Sci. Pub., 1986).
7. Scherbakov A.B. Silver preparations. Pharmaceutical Journal. 2006. 5: 45. [in Russian].
8. Savadyan E.S., Melnikova V.M., Belikova G.P. Current trends in the use of silver-containing antiseptics. Antibiotics and Chemotherapy. 1989. 11: 874. [in Russian].
9. Ivask A., Juganson K., Bondarenko O., Mortimer M., Aruoja V., Kasemets K., Kahru A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology. 2014. 1: 57. https://doi.org/10.3109/17435390.2013.855831
10. Schrand A.M., Rahman M.F., Hussain S.M., Schlager J.J., Smith D.A., SyedA. F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010. 2(5): 544. https://doi.org/10.1002/wnan.103
11. Hsiao T.-C. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int. J. Nanomedicine. 2013. 8: 4495. https://doi.org/10.2147/IJN.S52239
12. Amaro F., Moron A., Diaz S., Martin-Gonzalez A., Gutierrez J.C. Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms. 2021. 9(2): 364. https://doi.org/10.3390/microorganisms9020364
13. Beer C., Foldbjerg R., Hayashi Y., Sutherland D.S., Autrup H. Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol. Lett. 2012. 208(3): 286. https://doi.org/10.1016/j.toxlet.2011.11.002
14. Leonenko N.S. Comparative analysis of toxicity and danger of chemical compounds of various dimensions. Ukrainian Journal Modern Problems of Toxicology, Modern Problems of Toxicology, Food and Chemical Safety. 2016. 2: 48.
15. Ji J.H. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2007. 19(10): 857. https://doi.org/10.1080/08958370701432108
16. Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., Kwon I.H., Jeong J., Han B.S., Yu I.J. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008. 20(6): 575. https://doi.org/10.1080/08958370701874663
17. Kaba S.I., Ignashkova T.I., Rybakov A.S., Meshchersky M.E., Sokolovskaya A.A., Yurkiv V.A., Moskovtsev A.A., Egorova E.M., Kubatiev A.A. Cytotoxic and stress-inducing effect of silver nanoparticles on cells of HeLa and U937 lines. Pathogenesis. 2013. 11(2): 46.
18. Panacek A., Kvitek L., Smekalova M., Vecerova R., Kolar M., Roderova M., Dycka F., Sebela M., Prucek R., Tomanec O., Radek Z. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018. 13: 65. https://doi.org/10.1038/s41565-017-0013-y
19. Tang J., Wu Y., Esquivel-Elizondo S., Sorensen S.J., Rittmann B.E. How Microbial Aggregates Protect against Nanoparticle, Toxicity. Trends Biotechnol. 2018. 36(11): 1171. https://doi.org/10.1016/j.tibtech.2018.06.009
20. Ellis D.H., Maurer-Gardner E.I., Sulentic C.E.W., Hussain S.M. Silver nanoparticle antibacterial efficacy and resistance, development in key bacterial species. Biomed. Phys. Eng. Express. 2018. 5(1): 015013. https://doi.org/10.1088/2057-1976/aad5a7
21. Petritskaya E.N., Rogatkin D.A., Rusanova E.V. Comparative characteristics of the antibacterial action of silver and nanophase silver in vitro. Almanac of Clinical Medicine. 2016. 44(2): 221. [in Russian]. https://doi.org/10.18786/2072-0505-2016-44-2-221-226
22. Park Y., Hong Y.N., Weyers A., Kim Y.S., Linhardt R.J. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 2011. 5(3): 69. https://doi.org/10.1049/iet-nbt.2010.0033
23. Sperling R.A., Parak W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philosophical Transactions of the Royal Society A. 2010. 368(1915): 1333. https://doi.org/10.1098/rsta.2009.0273
24. Roy S., Das T.K. Plant Mediated Green Synthesis of Silver Nanoparticles-A Review. Int. J. Plant Biol. Res. 2015. 3(3): 1044.
25. Laguta I., Stavinskaya O., Kazakova O., Fesenko T., Brychka S. Green synthesis of silver nanoparticles using Stevia leaves extracts. Appl. Nanosci. 2019. 9(2): 755. https://doi.org/10.1007/s13204-018-0680-5
26. Stavinskaya O., Laguta I., Fesenko T., Krumova M. Effect of Temperature on Green Synthesis of Silver Nanoparticles Using Vitex Agnus-castus Extract. Chemistry Journal of Moldova. 2019. 14(2): 1857. https://doi.org/10.19261/cjm.2019.636
27. Laguta I., Fesenko T., Stavinskaya O., Dzjuba O., Shpak L. Antioxidant and antimicrobial properties of Stevia leaves extracts and silver nanoparticles colloids. Chemistry Journal of Moldova. 2016. 11(2): 46. https://doi.org/10.19261/cjm.2016.11(2).08
28. Okafor F., Janen A., Kukhtareva T., Edwards V., Curley M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. Int. J. Environ. Res. Public Health. 2013. 10(10): 5221. https://doi.org/10.3390/ijerph10105221
29. Abdelghany T.M., Al-Rajhi A.M.H., Al Abboud M.A., Alawlaqi M.M., Magdah A.G., Helmy E.A.M., Mabrouk A.S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoScience. 2018. 8: 5. https://doi.org/10.1007/s12668-017-0413-3
30. Shankar K.G., Pradhan N., Masilamani K., Fleming A.T. Silver Nanoparticles from Trianthema Portulacastrum: Green Synthesis, Characterization, Antibacterial and Anticancer Properties. Asian. J. Pharm. Clin. Res. 2017. 10(3): 308. https://doi.org/10.22159/ajpcr.2017.v10i3.16216
31. Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Spec. Discuss. Faraday Soc. Special. 1951. 11: 55. https://doi.org/10.1039/df9511100055
32. Zhang Q., Li N., Goebl J., Lu Z., Yin Y. A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a "Magic" Reagent? J. Am. Chem. Soc. 2011. 133(46): 18931. https://doi.org/10.1021/ja2080345
33. Kim B.H., Lee J.S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 2015. 149-150: 678. https://doi.org/10.1016/j.matchemphys.2014.11.026
34. Zhang J., Langille M.R., Mirkin C.A. Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds. Nano Lett. 2011. 11(6): 2495. https://doi.org/10.1021/nl2009789
35. Henglein A., Mulvaney P., Linnert T. Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 1991. 92: 31. https://doi.org/10.1039/fd9919200031
36. Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007.73(6): 1712. https://doi.org/10.1128/AEM.02218-06
37. Bobiev G.M., Sufiev T.D., Shakhmatov A.N. Antibacterial activity of coordination compounds of silver and tryptophan. Pharm. Chem. J. 2008. 42(11): 10. [in Russian]. https://doi.org/10.1007/s11094-009-0200-8
38. Bobiev G.M., Sufiev T.D., Shakhmatov A.N., Abdulov Kh.Sh. Synthesis and characterization of coordination compounds of silver and tryptophan Pharm. Chem. J. 2008. 42(12): 36. [in Russian]. https://doi.org/10.1007/s11094-009-0206-2
39. Zaheer Z., Malik M.A., Al-Nowaiser F.M., Khan Z.Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids Surf. B. 2010. 81(2): 587. https://doi.org/10.1016/j.colsurfb.2010.08.001
40. Mukha Iu., Vityuk N., Severynovska O., Eremenko A., Smirnova N. The pH-Dependent Structure and Properties of Au and Ag Nanoparticles Produced by Tryptophan Reduction. Nanoscale Res. Lett. 2016. 11: 101. https://doi.org/10.1186/s11671-016-1318-8
41. Vityuk N.V., Mukha Iu.P., Makhno S.M., Eremenko A.M., Smirnova N.P. Stabilization of silver nanoparticles in the presence of tryptophan. Surface. 2015. 7(22): 222. [in Ukrainian].
42. Mukha Iu., Vityuk N., Khodko A., Kachalova N., Fedyshyn O., Malysheva M., Eremenko A. Photo- and temperature-dependent formation of tryptophan/silver nanoparticles. Res. Chem. Intermed. 2019. 45(8): 4053. https://doi.org/10.1007/s11164-019-03890-5
43. Naumovets A.G. Nanosized systems and nanomaterials: research in Ukraine. (Kyiv: Akademperiodyka, 2014). [in Russian].
44. Shmarakov I.O., Mukha Iu.P., Karavan V.V., Chunikhin O.Yu., Marchenko M.M., Smirnova N.P., Eremenko A.M. Tryptophan assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity. Nanobiomedicine. 2014. 1: 01. https://doi.org/10.5772/59684
45. Mukha Iu., Vityuk N., Grodzyuk G., Shcherbakov S., Lyberopoulou A., Efstathopoulos E.P., Gazouli M. Anticancer effect of Ag, Au, and Ag/Au bimetallic nanoparticles prepared in the presence of tryptophan. J. Nanosci. Nanotechnol. 2017. 17(12):8987. https://doi.org/10.1166/jnn.2017.14106
46. Krylova G., Eremenko A., Smirnova N. Photochemical production of stable gold nanoparticles in aqueous solutions and in silicate matrix. In: All-Ukrainian Conference of Young Scientists "Nanomaterials in Chemistry, Biology and Medicine". (Kyiv, 2006). P. 68. [in Ukrainian].
47. Yashan H., Krylova G., Eremenko A., Smirnova N., Huang W., Tabor Ch. Optical Spectra and Morphology of Photochemically Produced Ag/Au Bimetallic Clusters. In: Springer Book of NATO Science Series, Sol-Gel Methods for Materials Processing. Proc. of the NATO Advanced Research Workshop on Sol-Gel Approaches to Materials for Pollutin Control, Water Purification and Soil Remediation. (2008, Kyiv, Ukraine). P. 473. https://doi.org/10.1007/978-1-4020-8514-7_45
48. Eustis S., Krylova G., Eremenko A., Smirnova N., Schill A.W., El-Sayed M. Growth and Fragmentation of Silver Nanoparticles in their Synthesis with femtosecond Laser and CW Light by Photo-Sensitization with Benzophenone. Photochem. Photobiol. Sci. 2005. 4(1): 154. https://doi.org/10.1039/b411488d
49. Krylova G., Eremenko A., Smirnova N., Eustis S. Photochemical formation of Ag nanoparticles in water-alcohol solutions and on the surface of mesoporous silica. Theor. Exp. Chem. 2005. 41(2):105. https://doi.org/10.1007/s11237-005-0028-6
50. Krylova G., Eremenko A., Smirnova N., Eustis S. Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica. Int. J. Photoenergy. 2005. 7(4): 193. https://doi.org/10.1155/S1110662X05000292
51. Krylova G., Smirnova N., Eremenko A., Eustis S., Huang W., El-Sayed M.A. Photocatalytic production of silver nanoparticles with benzophenone modified silica films. J. Photochem. Photobiol. A. 2006. 181: 385. https://doi.org/10.1016/j.jphotochem.2005.12.024
52. Mukha Y.P., Eremenko A.M., Smirnova N.P., Mikhienkova A.I., Korchak G.I., Gorchev V.F., Chunikhin A.Yu. Antimicrobial activity of stable silver nanoparticles of a certain size. Prikladnaia biokhimiia i mikrobiologiia. 2013. 49(2): 215. https://doi.org/10.1134/S0003683813020117
53. Grechko L.G., Eremenko A.M., Krylova G.V., Smirnova N.P. Optical properties of small silver particles in colloidal solutions. Visn. Kyiv. University, Ser: Phys.-Math. Science. 2004. 4: 450. [in Ukrainian].
54. Eremenko A.M., Yashan H.R., Krylova G.V., Smirnova N.P., Suzer S., Tabor Ch. Photochemical/thermal production, optical spectra and scanning electron microscopy of Ag/Au BMNP in silica sol-gel films. Theor. Exp. Chem. 2008. 44(6): 348.
55. Krylova G., Eremenko A., Smirnova N. Photochemical generation of nanosized silver particles in mesoporous SiO2 films. Physics and Chemistry of Solid State. 2006. 7: 50.
56. Bugla-Ploskonska G., Leszkiewicz A. Bactericidal properties of silica particles with silver islands located on the surface. Int. J. Antimicrob. Agents. 2007. 29: 738. https://doi.org/10.1016/j.ijantimicag.2006.09.022
57. Yashan G.R., Krylova G.V., Eremenko A.M., Smirnova N.P., Jalko-Titarenko V.P., Marievsky V.F., Chekman I.S. Bactericidal properties of gold and silver nanoparticles in solutions and on the surface of highly dispersed silica. Chemistry, Physics and Technology of Surface. 2008. 14: 524. [in Russian].
58. Shmarakov I.O., Marchenko M.M., Mukha Yu.P., Yashan G.R., Smirnova N.P., Eremenko G.M. Cyto- and genotoxic effect of colloidal nanopreparations based on Ag and Au on primary cell cultures. Biological systems. 2010. 2(4): 13.
59. Patent UA 67484. Korchak G.I., Surmasheva O.V., Mikhienkova A.I., Yeremenko A.M., Mukha Yu.P., Smirnova N.P. Process for Preparation of Solutions of Nano-sized silver. 2012.
60. Patent UA 67536. Yeremenko A.M., Mukha Yu.P., Smyrnova N.P., Surmasheva O.V., Mikhiienkova A.I. Antibacterial Composite. 2012.
61. Mukha I., Eremenko A., Smirnova N., Korchak G, Mikhiyenkova A., Chekman I. Formation, physical - chemical and bacterici deproperties of stabilized silver nanostructure son the surface of disperse silica. Chemistry, Physics and Technology of Surface. 2009. 15: 255. [in Russian].
62. Mukha I., Eremenko A., Korchak G., Michienkova A. Antibacterial Action and Physicochemical Properties of Stabilized Silver and Gold Nanostructures on the Surface of Disperse Silica. Journal of Water Resource and Protection. 2010. 2(2): 131. https://doi.org/10.4236/jwarp.2010.22015
63. Eremenko A.M., Smirnova N.P., Mukha Yu.P., Yashan G.R. Nanoparticles of silver and gold in silica matrices: synthesis, properties and application. Theor. Exp. Chem. 2010. 46(2): 67. https://doi.org/10.1007/s11237-010-9122-5
64. Eremenko A., Smirnova N., Gnatiuk I., Linnik O., Vityuk N., Mukha I., Korduban A. Silver and Gold Nanoparticles on Sol-Gel TiO2, ZrO2, SiO2 Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties. In: Nanocomposites and Polymers with Analytical Methods. (InTech, Rijeka, Croatia, 2011). P.51-82. https://doi.org/10.5772/18252
65. Mura S., Greppi G., Malfatti L., Lasio B., Sanna V., Mura M., Marceddu S., Lugli A. Multifunction alization of wool fabrics through nanoparticles: A chemical route towards smart textiles. J. Colloid Interface Sci. 2015. 456: 85. https://doi.org/10.1016/j.jcis.2015.06.018
66. Jasiorski M., Leszkiewicz A., Brzezinski S., Bugla-Ploskonska G., Malinowska G., Borak B., Karbownik I., Baszczuk A. Textile with silver silica spheres: it's antimicrobial activity against Escherichiacoliand Staphylococcusaureus. J. Sol-Gel Sci. Technol. 2009. 51: 330. https://doi.org/10.1007/s10971-009-1902-9
67. Bianco C., Kezic S., Svetlicic M.C.V., Adami G. et al. In vitro percutaneous penetration and characterization of silver from silver - containing textiles. Int. J. Nanomed. 2015. 10: 1899. https://doi.org/10.2147/IJN.S78345
68. Cao H., Liu X., Meng F., Chu P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials. 2011. 32(3): 693. https://doi.org/10.1016/j.biomaterials.2010.09.066
69. Agarwal A., Weis T., Schurr M., Faith N., Czuprynski C., McAnulty J., Murphy C., Abbott N. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010. 31: 680. https://doi.org/10.1016/j.biomaterials.2009.09.092
70. Barcikowski S., Menendez-Manjon A., Chichkov B., Brikas M., Raciukaitis G. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl. Phys. Lett. 2007. 91: 083113. https://doi.org/10.1063/1.2773937
71. Stelzig S., Menneking C., Hoffmann M., Eisele K., Barcikowski S., Klapper M., Mullen K. Compatibilization of laser generated antibacterial Ag- and Cu-nanoparticles for perfluorinated implant materials. Eur. Polym. J. 2011. 47: 662. https://doi.org/10.1016/j.eurpolymj.2010.10.018
72. Loher S., Schneider O., Maienfisch T., Bokorny S., Stark W. Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Small. 2008. 4(6): 824. https://doi.org/10.1002/smll.200800047
73. Khaydarov R., Khaydarov R., Gapurova O., Estrin Y., Scheper T. Electrochemical method of synthesis of silver nanoparticles. J. Nanopart. Res. 2009. 11(5): 1193. https://doi.org/10.1007/s11051-008-9513-x
74. Yuranova T., Rincon A., Pulgarin C., Laub D., Xantopoulos N., Mathieu H.-J., Kiwi J. Performance and characterization of Ag-cotton and Ag/TiO2 -loaded textiles during the abatement of E. coli. J. Photochem. Photobiol. A. 2006. 181: 363. https://doi.org/10.1016/j.jphotochem.2005.12.020
75. Lee H., Yeo S., Jeong S. Antibacterial effect of nanosizes silver colloidal solution on textile fabrics. J. Mater. Sci. 2003. 38: 2199.
76. Giannossa L.C., Longano D., Ditaranto N., Nitti M.A., Paladini F., Pollini M., Rai M., Sannino A., Valentini A., Cioffi N. Metal nanoantimicrobials for textile applications. Nanotechnol. Rev. 2013. 2(3). https://doi.org/10.1515/ntrev-2013-0004
77. Timoshina Yu.A., Sergeeva E.A. Obtaining antibacterial textile materials based on silver nanoparticles by modifying the textile surface with nonequilibrium low-temperature plasma. Bulletin of the Kazan Technological University. 2012. 7: 125. [in Russian].
78. Petrik I., Eremenko A., Rudenko A. Enhanced Bactericidal Activity of Cotton Fabrics Modified by Binary Ag/Cu Nanoparticle. Am Journal of Biochemistry and Molecular Biology. 2018. 3(1): 1.
79. Eremenko A., Petrik I., Rudenko A., Tananaiko O., Lelyushok S., Ishchenko N. The peculiarities of Ag and Cu ions release from bactericidal textiles in water and their influence on spectral, electrical and biocide properties of textile. J. Nanosci. Nanomed. 2018. 2(1): 20.
80. Petrik I.S., Eremenko A.M., Smirnova N.P., Rudenko A.V., Marikvas Y.S. Structural and optical properties of antibacterial materials based on Agand Ag/Cu nanoparticles. In: Ukrainian conference with international participation "Chemistry, Physics and Technology of Surface" devoted to the 30th anniversary of the founding of Chuiko Institute of Surface Chemistry of NAS of Ukraine and Workshop "Nanostructured Biocompatible/Bioactive Materials". (Kyiv, 2016). P. 131.
81. Eremenko A., Petrik I., Smirnova N., Rudenko A., Marikvas Y. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Res. Lett. 2016. 11(28): 28. https://doi.org/10.1186/s11671-016-1240-0
82. Eremenko А., Petrik I., Smirnova N., Romanenko L., Surmasheva E., Korchak G., Tananaiko O., Ishchenko M. Bactericidal cotton fabrics modified by silver and copper nanoparticles: optical spectra, structures, electrical resistance. Journal of Analytical, Bioanalytical and Separation Techniques. 2016. 1(1): 1. https://doi.org/10.15436/2476-1869.16.1272
83. Saddat Ghaderi R., Kazemi M., Soleimanpour S. Nanoparticles are More Successful Competitor than Antibiotics in Treating Bacterial Infections: A Review of the Literature. Iran J. Med. Microbiol. 2021. 15(1): 18. https://doi.org/10.30699/ijmm.15.1.18
84. Kim H.W., Kim B.R., Rhee Y.H. Imparting durable antimicrobial properties to cotton fabrics using alginate-quaternary ammonium complex nanoparticles. Carbohydr. Polym. 2010. 79: 1057. https://doi.org/10.1016/j.carbpol.2009.10.047
DOI: https://doi.org/10.15407/hftp12.04.326
Copyright (©) 2021 A. M. Eremenko, I. S. Petryk, Y. P. Mukha, N. V. Vityuk, N. P. Smirnova, A. D. Rudenko
This work is licensed under a Creative Commons Attribution 4.0 International License.