Peculiarities of U(VI) sorption on composites containing hydrated titanium dioxide and potassium-cobalt hexacyanoferrate(II)
DOI: https://doi.org/10.15407/hftp12.04.344
Abstract
As opposed to polymer sorbents, inorganic materials are stable against ionizing radiation. This gives a possibility to use them for the removal of radionuclides from water. As a rule, highly selective inorganic sorbents are obtained in a form of finely dispersive powder. This makes it difficult to use them in practice. Here the composites based on hydrated titanium dioxide containing K2Co[Fe(CN)6] have been developed. The modifier was inserted into partially (hydrogel) and fully (xerogel) formed oxide matrices. Modifying of hydrogel followed its transformation to xerogel provides the formation of potassium-cobalt hexacyanoferrate(II) nanoparticles (up to 10 nm), which are not washed out in aqueous media due to encapsulation in hydrated oxide. A number of the methods for sample characterization were used in this work: transmission electronic microscopy for vizualization of embedded nanoparticles, optical microscopy to measure granule size, FT-IR spectroscopy, X-ray fluorescence spectroscopy for chemical analysis of the samples, potentiometric titration to estimate ion exchange properties, and spectrophotometric analysis of the solution to determine U(VI) concentration. The features of U(VI) sorption from nitrate and sulfate solutions are considered: the effect of the sorbent dosage and solution composition was in a focus of attention. The influence of the modifier is the most pronounced at pH ³ 4, when U(VI) is in a form of one-charged cations (UO2OH+): the removal degree of U(VI) is close to 100 %. This positive effect of the selective constituent is expressed in a presence of an excess of NO3–, SO42– and Na+ ions. The model of chemical reaction of pseudo second order has been applied to sorption. Both pristine sorbent and composite are most completely regenerated with a 0.1 M KOH solution - the regeneration degree is 92 and 96 % respectively. In this case, the half-exchange time is minimal and equal to » 23 min (initial hydrated titanium dioxide) and 47 min (composite). Desorption obeys the model of particle diffusion: the diffusion coefficients for ions being exchanged are (1.7–7.6)´10–13 m2s–1.
Keywords
References
1. Hristovski K.D., Markovski J. Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Sci. Total Environ. 2017. 598: 258. https://doi.org/10.1016/j.scitotenv.2017.04.108
2. Kumar R., Chawla J. Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual. Exposure Health. 2014. 5: 215. https://doi.org/10.1007/s12403-013-0100-8
3. Khandare D., Mukherjee S. A review of metal oxide nanomaterials for fluoride decontamination from water environment. Mater. Today: Proc. 2019. 18(3): 1146. https://doi.org/10.1016/j.matpr.2019.06.575
4. Maltseva T.V., Kudelko E.O., Belyakov V.N. Adsorption of Cu(II), Cd(II), Pb(II), Cr(VI) by double hydroxides on the basis of Al oxide and Zr, Sn, and Ti oxides. Russ. J. Phys. Chem. A. 2009. 83(13): 2336. https://doi.org/10.1134/S0036024409130263
5. Kudelko K., Maltseva T., Bieliakov V. Adsorption and mobility of Cu(II), Cd(II), Pb(II) ions adsorbed on (hydr) oxide polymer sorbents MxOy• nH2O, M= Zr(IV), Ti(IV), Sn(IV), Mn(IV). Desalin. Water Treat. 2011. 35(1-3): 295.
6. Trivedi P., Axe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environ. Sci. Technol. 2001. 35(9): 1779. https://doi.org/10.1021/es001644+
7. Chaban M., Rozhdesvenska L., Dzyazko Yu., Ponomarova L., Palchik A. Nanocomposite sorbents based on TiO2 containing manganese spinel for concentration of lithium ions. In: Nanomaterials: Applications and Properties (NAP 2020). Proc. 2020 IEEE 10th Int. Conf. (Nov. 9-13, 2020, Sumy, Ukraine). 9309587. https://doi.org/10.1109/NAP51477.2020.9309587
8. Rozhdestvenska L.M., Chaban M.O., Dzyazko Yu.S., Palchik O.V., Dzyazko O.G. Formation of lithium-selective sorbent in nanoreactors of the support based on titanium dioxide. Appl. Nanosci. 2021. https://doi.org/10.1007/s13204-021-01832-5 https://doi.org/10.1007/s13204-021-01832-5
9. Haq S., Rehman W., Waseem M. Adsorption Efficiency of AnataseTiO2 Nanoparticles Against Cadmium Ions. J. Inorg. Organomet. Polym. Mater. 2019. 29: 651. https://doi.org/10.1007/s10904-018-1038-x
10. Shi K., Luo M., Ying J., Zhen S., Xing Z., Chen R. Single-crystalline lithium manganese oxide nanotubes using ammonium peroxodisulfate. iScience. 2020. 23(11): 101768. https://doi.org/10.1016/j.isci.2020.101768
11. Dzyazko Yu., Rozhdestveskaya L., Zmievskii Yu., Zakharov V., Myronchuk V. Composite inorganic anion exchange membrane for electrodialytic desalination of milky whey. Mater. Today: Proc. 2019. 6(2): 250. https://doi.org/10.1016/j.matpr.2018.10.102
12. Myronchuk V., Zmievskii Yu., Dzyazko Yu., Rozhdestvenska L., Zakharov V. Whey desalination using polymer and inorganic membranes: operation conditions. Acta Periodica Technologica. 2018. 49: 103. https://doi.org/10.2298/APT1849103M
13. Martí-Calatayud M.C., García-Gabaldón M., Pérez-Herranz V., Sales S., Mestre S. Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv. 2015. 5(57): 46348. https://doi.org/10.1039/C5RA04169D
14. Mora-Gómez J., García-Gabaldón M., Martí-Calatayud M.C., Mestre S., Pérez-Herranz V. Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. J. Am. Ceram. Soc. 2017. 100(9): 4180. https://doi.org/10.1111/jace.14978
15. Dzyazko Y.S., Rozhdestvenska L.M., Vasilyuk S.L., Kudelko K.O., Belyakov V.N. Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res. Lett. 2017. 12(1): 438. https://doi.org/10.1186/s11671-017-2208-4
16. Saki S., Uzal N., Ates N. The size and concentration effects of Al2O3 nanoparticles on PSF membranes with enhanced structural stability and filtration performance. Desalin. Water Treat. 2017. 84: 215. https://doi.org/10.5004/dwt.2017.21204
17. Pang R., Li X., Li J., Sun X., Wang L. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination. 2014. 332(1): 60. https://doi.org/10.1016/j.desal.2013.10.024
18. Zheng Y.-M., Zou S.-W., Nadeeshani Nanayakkara K.G., Matsuura T., Chen J. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. J. Membr. Sci. 374(1-2) 1. https://doi.org/10.1016/j.memsci.2011.02.034
19. Perlova N., Dzyazko Y., Perlova O., Palchik A., Sazonova V. Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations. Nanoscale. Res. Lett. 2017. 12: 209. https://doi.org/10.1186/s11671-017-1987-y
20. Perlova O., Dzyazko Yu., Halutska I., Perlova N., Palchik A. Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. In: Nanooptics, Nanophotonics, Nanostructures, and Their Applications. (Springer International Publishing AG, part of Springer Nature, 2018). https://doi.org/10.1007/978-3-319-91083-3_1
21. Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Appl. Nanosci. 2019. 9(5): 997. https://doi.org/10.1007/s13204-018-0689-9
22. Kolomiyets Y.O., Belyakov V.N., Palchik A.V., Maltseva T.V., Zheleznova L.I. Adsorption of arsenic by hybrid anion-exchanger based on titanium oxyhydrate. J. Water Chem. Technol. 2017. 39(2): 80. https://doi.org/10.3103/S1063455X17020047
23. Dzyazko Yu., Kolomyets E., Borysenko Yu., Chmilenko V., Fedina I. Organic-inorganic sorbents containing hydrated zirconium dioxide for removal of chromate anions from diluted solutions. Mater. Today: Proc. 2019. 6(2): 260. https://doi.org/10.1016/j.matpr.2018.10.103
24. Chouyyok W., Pittman J.W., Warner M.G., Nell K.M., Clubb D.C., Gill G.A., Addleman R.S. Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater. Dalton Trans. 2016. 45(28): 11312. https://doi.org/10.1039/C6DT01318J bbbbbnm
25. Mahmoud M.E., Abou Ali S.A.A., Elweshahy S.M.T. Microwave functionalization of titanium oxide nanoparticles with chitosan nanolayer for instantaneous microwave sorption of Cu(II) and Cd(II) from water. Int. J. Biol. Macromol. 2018. 111: 393.
https://doi.org/10.1016/j.ijbiomac.2018.01.014
26. Ide A., Drisko G.L., Scales N., Luca V., Schiesser C.H., Caruso R.A. Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides. Langmuir. 2011. 27(21): 12985. https://doi.org/10.1021/la202561f
27. Liu G., Wu C., Zhang X., Liu Y., Meng H., Xu J., Han Y., Xu X., Xu Y. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin. Mater. Chem. Phys. 2016. 176: 129. https://doi.org/10.1016/j.matchemphys.2016.03.042
28. Vallée A., Faga M.G., Mussano F., Catalano F., Tolosano E., Carossa S., Altruda F., Martra G. Alumina-zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: effect of protein adsorption on cellular response. Colloids Surf. B. Biointerfaces. 2014. 114: 284. https://doi.org/10.1016/j.colsurfb.2013.09.053
29. Danalıoğlu S.T., Bayazit S.S., Kerkez O.K., Salam Mohamed Abdel S.M. Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 2017. 240: 589. https://doi.org/10.1016/j.molliq.2017.05.131
30. Mahmoud M.E., Abdelwahab M.S., Fathallah E.M. Design of novel nano-sorbents based on nano-magnetic iron oxide-bound-nano-silicon oxide-immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem. Eng. J. 2013. 223: 318. https://doi.org/10.1016/j.cej.2013.02.097
31. Zheng Y.M., Lim S.F., Chen J.P. Preparation and chN.,aracterization of zirconium-based magnetic sorbent for arsenate removal. J. Colloid Interface Sci. 2009. 338(1): 22. https://doi.org/10.1016/j.jcis.2009.06.021
32. Egorin A., Tokar E., Matskevich A., Ivanov N., Tkachenko I., Sokolnitskaya T., Zemskova L. Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics. 2020. 5(2): 22. https://doi.org/10.3390/biomimetics5020022
33. Panasenko A., Pirogovskaya P., Tkachenko I., Ivannikov S., Arefieva O., Marchenko Y. Synthesis and characterization of magnetic silica/iron oxide composite as a sorbent for the removal of methylene blue. Mater. Chem. Phys. 2020. 245: 122759. https://doi.org/10.1016/j.matchemphys.2020.122759
34. Perlova O.V., Ivanova I.S., Dzyazko Yu.S., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya. Sorption of U(VI) compounds on inrganic composites containing partially unzipped multiwalled nanotubes. Him. Fiz. Tekhnol. Surf. 2021. 12(1): 16.
35. Perlova O.V., Dzyazko Yu.S., Palchik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020. 10(12): 45. https://doi.org/10.1007/s13204-020-01313-1
36. Zhang K., Dwivedi V., Chi C., Wu J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater. 2010. 182(1-3): 162. https://doi.org/10.1016/j.jhazmat.2010.06.010
37. Luo X., Wang X., Bao S., Liu X., Zhang W., Fang T. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci. Rep. 2016. 6: 39108. https://doi.org/10.1038/srep39108
38. Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q., Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015. 281: 1. https://doi.org/10.1016/j.cej.2015.06.043
39. Seredych M., Bandosz T.J. Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chem. Eng. J. 2011. 166(3): 1032. https://doi.org/10.1016/j.cej.2010.11.096
40. Myronchuk V., Zmievskii Y., Dzyazko Y., Rozhdestveska L., Zakharov V., Bildyukevich A. Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite. Acta Periodica Technologica. 2019. 50: 163. https://doi.org/10.2298/APT1950163M
41. Nguyen-Phan T.-D., Pham V.H., Shin F.W., Pham H.-D., Kim S., Chung J.K., Kim E.J., Hur S.H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011. 170(1): 226. https://doi.org/10.1016/j.cej.2011.03.060
42. Prout W.E., Russel E.R., Groh H.J. Ion exchange adsorption of cesium by potassium hexacyanocobalt(II) ferrate (II). J. Inorg. Nucl. Chem. 1965. 27(2): 473. https://doi.org/10.1016/0022-1902(65)80367-0
43. Kawamura S., Shibata S., Kurotaki K., Takeshita H. The sorption characteristics of radionuclides on copper hexacyanoferrate(II), and the determination of 137Cs in sea water. Anal. Chim. Acta. 1978. 102: 225. https://doi.org/10.1016/S0003-2670(01)93481-6
44. Qing Y.H., Li J., Kang B., Chang S.Q., Dai Y.D., Long Q., Yuan C. Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds. J. Radioanal. Nucl. Chem. 2015. 304: 527. https://doi.org/10.1007/s10967-014-3876-5
45. Petersková M., Valderrama C., Oriol G., Cortina J.L. Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents. Desalination. 2012. 286: 316. https://doi.org/10.1016/j.desal.2011.11.042
46. Loos-Neskovic C., Ayrault S., Badillo V., Jimenez B., Garnier E., Fedoroff M.D., Jones J., Merinov B. Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J. Solid State Chem. 2004. 177(6): 1817. https://doi.org/10.1016/j.jssc.2004.01.018
47. Paolella A., Faure C., Timoshevskii V., Marras S., Bertoni G., Guerfi A., Vijh A., Armand M., Zaghib K. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A. 2017. 5(36): 18919. https://doi.org/10.1039/C7TA05121B
48. Mullaliu A., Giorgetti M. Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities. In: Applications of Ion Exchange Materials in the Environment. (Cham: Springer, 2019). https://doi.org/10.1007/978-3-030-10430-6_6
49. Naidu G., Nur T., Paripurnanda T., Jaya L., Kandasamy J., Vigneswaran S. Selective sorption of rubidium by potassium cobalt hexacyanoferrate. Sep. Purif. Technol. 2016. 163: 238. https://doi.org/10.1016/j.seppur.2016.03.001
50. Yang Y., Faustino P.J., Progar J.J., Brownell C.R., Sadrieh N., May J.C., Leutzinger E., Place D.A., Duffy E.P., Yu L.X., Khan M.A., Lyon R.C. Quantitative determination of thallium binding to ferric hexacyanoferrate: Prussian blue. Int. J. Pharm. 2008. 353(1-2): 187. https://doi.org/10.1016/j.ijpharm.2007.11.031
51. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P., Kosorukov A.A. Removal of U(VI) from aqueous media with layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions. Radiochemistry. 2015. 57(6): 616. https://doi.org/10.1134/S1066362215060090
52. Polyakov E.V., Volkov I.V., Khelbnikov N.A. Competitive Sorption of Ions of Cesium and Other Microelements onto Iron(III) Hexacyanoferrate (II) in the Presence of Humic Acids. Radiochemistry. 2015. 57(2): 161. https://doi.org/10.1134/S1066362215020083
53. Perlova O.V., Dzyazko Yu.S., Palchik O.V., Martovyi I.S. Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate (II) for sorption of cationic and anionic complexes of uranium(VI). Appl. Nanosci. 2021. https://doi.org/10.1007/s13204-021-01721-x
54. Voronina A.V., Kulyaeva I.O., Gupta D.K. Determination of the parameters of selective 137Cs sorption onto natural and ferrocyanide-modified glauconite and clinoptilolite. Radiochemistry. 2018. 60: 35. https://doi.org/10.1134/S106636221801006X
55. Zhang H., Kim Y.K., Hunter T.N., Andrew P., Brown A.P., Lee J.W., Harbottle D. Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J. Mater. Chem. A. 2017. 5(29): 15130. https://doi.org/10.1039/C7TA03873A
56. Alamudy H.A., Cho K. Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem. Eng. J. 2018. 349: 595. https://doi.org/10.1016/j.cej.2018.05.137
57. Lee H.K., Yang D.S., Oh W., Cho S.J. Copper ferrocyanide functionalized core-shell Magnetic Silica Compositesfor the Selective Removal of Cesium Ions from radioactive liquid waste. J. Nanosci. Nanotechnol. 2016. 16(6): 6223. https://doi.org/10.1166/jnn.2016.10886
58. Michel C., Barré Y., Guiza M., Dieuleveult C., Windt I., Grandjean A. Breakthrough studies of the adsorption of Cs from fresh water using a mesoporous silica material containing ferrocyanide. Chem. Eng. J. 2018. 339: 288. https://doi.org/10.1016/j.cej.2018.01.101
59. Mahmoud M.R., Seliman A.F. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions. Appl. Radiat. Isot. 2014. 91: 141. https://doi.org/10.1016/j.apradiso.2014.05.021
60. Galysh V.V., Kartel M.T., Milyutin V.V., Pakhlov E.M., Oranska O.I., Gornikov Y.I. Composite cellulose-inorganic sorbents for 137Cs recovery. J. Radioanal. Nucl. Chem. 2014. 301(2): 315. https://doi.org/10.1007/s10967-014-3179-x
61. Galysh V.V., Kartel M.T., Milyutin V.V. Synthesis and sorption properties of combined cellulose-inorganic sorbents for the concentration of cesium-137. Surface. 2013. 5(20): 135.
62. Galysh V.V., Kartel M.T. Modification of cellulose and lignocellulose materials with nanoclusters of copper ferrocyanides. Him. Fiz. Tekhnol. Poverhni. 2014. 5(4): 438. https://doi.org/10.15407/hftp05.04.438
63. Kiener J., Limousy L., Jeguirim M., Meins J.M., Hajjar-Garreau S., Bigoin G., Ghimbeu C.M. Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials. 2019. 12(8): 1253. https://doi.org/10.3390/ma12081253
64. Li J., Zan Y., Zhang Z., Dou M., Wang F. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium. J. Hazard. Mater. 2020. 385: 121568. https://doi.org/10.1016/j.jhazmat.2019.121568
65. Lee J.H., Suh D.H. Entropy, enthalpy, and Gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites. Nucl. Eng. Technol. 2021. 53(11): 3711. https://doi.org/10.1016/j.net.2021.06.006
66. Chaban M.O., Rozhdestvenska L.M., Palchik O.V., Ponomarova L.M., Dzyazko Y.S. Selective to lithium ions nanocomposite sorbents based on TiO2 containing manganase spinel. Voprosy Khimii i Khimicheskoi Tekhnologii. 2021. (4): 126. https://doi.org/10.32434/0321-4095-2021-137-4-126-133
67. Kadam B.V., Maiti B., Sathe R.M. Selective spectrophotometric method for the determination of uranium(VI). Analyst. 1981. 106(1263): 724. https://doi.org/10.1039/an9810600724
68. Nazarenko V.A., Antonovich V.P., Nevskaya E.M. Hydrolysis of metal ions in diluted solutions. (Moscow: Atomizdat, 1979). [in Russian].
69. Perlova O.V., Shirykalova A.A. Flotoextraction removal of uranium(VI) using fine emulsified solutions of trialkylamine in white spirit. J. Water Chem. Technol. 2008. 30(3): 385. https://doi.org/10.3103/S1063455X0804005X
70. Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999. 34(5): 451. https://doi.org/10.1016/S0032-9592(98)00112-5
71. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: part a: theory and applications in inorganic chemistry. 6th Edn. (Hoboken, Wiley, 2008). https://doi.org/10.1002/9780470405840
72. Helfferich F. Ion Exchange. (New York: Dover, 1995).
DOI: https://doi.org/10.15407/hftp12.04.344
Copyright (©) 2021 O. V. Perlova, Yu. S. Dzyazko, A. A. Malinovska, A. V. Palchik
This work is licensed under a Creative Commons Attribution 4.0 International License.