Chemistry, Physics and Technology of Surface, 2021, 12 (4), 382-392.

Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver



DOI: https://doi.org/10.15407/hftp12.04.382

O, M. Lavrynenko, O. Yu. Pavlenko, M. N. Zahornyi, S. F. Korichev

Abstract


 

X-ray phase and thermogravimetric analysis, scanning electron microscopy and energy-dispersion spectroscopy were used to study the products of phase formation during the precipitation of lanthanum and cerium salts in the presence of silver nitrate and recipients of precipitators, nucleating agents and hydrolysis regulators. Thermogravimetric analysis shows the completion of the La(OH)3 lattice dehydroxylation process at a temperature of ~ 300 °С and probable destruction of sulfates at a temperature of ~ 340 °С. The phase interaction of lanthanum oxide(III) with silver ends at T ~ 400 °C. The DTG curve shows a two-stage weight loss, which characterizes the destruction of lanthanum and silver hydroxides (250 °C) and the removal of sulfates (~ 340 °C), respectively. According to the TG, the total weight loss is 21.6 %. For the cerium-containing system the only endothermic effect of dehydroxylation of cerium hydroxide at T = 250 °C with its conversion into cerium dioxide is observed. The destruction of nitrates (anionic component of solutions) takes place at the temperature of 400 °C. Weight loss takes place at T = 150 °C and is 53.9 %. Thus, on the basis of TG-DTA data, it can be assumed that the formation of composites particles based on lanthanum and cerium oxides, modified with silver, ends at the temperature of 400 °C. The X-ray diffraction data shows that at the initial stage the system undergoes the formation of cerium and lanthanum hydroxides, and during lyophilization of the precipitate (T = 160 °C) the crystal lattice of hydroxides partial dehydroxylation takes place with the formation of trigonal oxides La2O3 and Ce2O3. It has been found that the presence of silver cations in the solution can affect the phase composition of lyophilized structures and the formation of the CeO2 phase. It is shown that the hydroxylamine chloride injection into the system can initiate the silver restoration on the lanthanum oxide surface and also partially restore it to the LaO phase. Temperature treatment of the samples (T = 400 °С) promotes homogenization of the precipitate composition: formation of 30 nm cerium dioxide particles with silver clusters evenly distributed on its surface, and hexagonal lanthanum oxide plates with individual silver particles as the second phase. In three-component systems, two modifications of lanthanum oxides (trigonal and cubic), cerium dioxide and metallic silver are formed. It is found that the chemical composition of the precipitates contains the main elements – La, Ce, O, Ag and impurity – S or Cl, as the anionic component of the initial solutions, N and K in the composition of the initial suspension. It is shown that the morphology of the samples is represented by hexagonal structures of lanthanum hydroxide and oxide, spherical and pseudocubic particles of cerium dioxide and lanthanum oxide, spherical clusters of silver.


Keywords


trigonal lanthanum oxide; cerium dioxide; doping of REE oxides with silver; phase formation; morphology of cerium and lanthanum oxides; silver

Full Text:

PDF

References


1. Nethi S.K., Bollu V.S., Anand P.N.A., Patra C.R. Rare Earth-Based Nanoparticles: Biomedical Applications, Pharmacological and Toxicological Significance. In: Nanoparticles and their Biomedical Applications. (Singapore: Springer, 2020). P. 1-43. https://doi.org/10.1007/978-981-15-0391-7_1

2. Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 2009. 78(9): 855. https://doi.org/10.1070/RC2009v078n09ABEH004058

3. Amoresi R.A.C., de Oliveira R.C., Marana N.L, de Almeida P.B., Prata P.S., Zaghete M.A., Longo E., Sambrano J.R., Simoes A.Z. CeO2 Nanoparticle Morphologies and their Corresponding Crystalline Planes for the Photocatalytic Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2019. 2(10): 6513. https://doi.org/10.1021/acsanm.9b01452

4. Younis A., Chu D., Li S. Cerium Oxide Nanostructures and their Applications. 2016.  https://doi.org/10.5772/65937

5. Gil D., Rodriguez J., Ward B., Vertegel A., Ivanov V., Reukov V. Antioxidant Activity of SOD and Catalase Conjugated with Nanocrystalline Ceria. Bioengineering (Basel). 2017. 4(1): 18. https://doi.org/10.3390/bioengineering4010018

6. Baker Ch.H. Radiation Protection with Nanoparticles Chapter 14. In: Nanomedicine in Health and Disease. (Boca Raton: CRC Press, 2011). P. 268. https://doi.org/10.1201/b11076-15

7. Celardo I., de Nicola M., Mandoli C., Pedersen J.Z., Traversa E., Ghibelli L. Ce3 Ions Determine Redox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles. ACS Nano. 2011. 5(6): 4537. https://doi.org/10.1021/nn200126a

8. Das M., Patil S., Bhargava N., Kang J.-F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons. Biomaterials. 2007 28(10): 1918. https://doi.org/10.1016/j.biomaterials.2006.11.036

9. Asati A., Santra S., Kaittanis Ch., Nath S., Perez J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. Engl. 2009. 48(13): 2308. https://doi.org/10.1002/anie.200805279

10. Sicard C., Perullini M., Spedalieri C., Coradin Th., Brayner R.L.J., Jobbagy M., Bilmes S.A. CeO2 Nanoparticles for the Protection of Photosynthetic Organisms Immobilized in Silica Gels. Chem. Mater. 2011. 23(6): 1374. https://doi.org/10.1021/cm103253w

11. Jing F.J., Huang N., Liu Y.W., Zhang W., Zhao X.B., Fu R.K., Wang J.B., Shao Z.Y., Chen J.Y., Leng Y.X., Liu X.Y., Chu P.K. Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition. J. Biomed. Mater. Res. Part A. 2008. 87(4): 1027. https://doi.org/10.1002/jbm.a.31838

12. Neacsu I.A., Stoica A.E., Vasile B.S., Andronescu E. Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications. Nanomaterials. 2019. 9(2): 239.

https://doi.org/10.3390/nano9020239

13. Nilsson H., Dragomir A., Roomans G.M. Biomedical Applications of Lanthanum. (New York: Nova Biomedical Books, 2010).

14. Lee S.H., Jun B.H. Silver Nanoparticles: Synthesisand Application for Nanomedicine. Int. J. Mol. Sci. 2019. 20(4): 865. https://doi.org/10.3390/ijms20040865

15. Gherasim O., Puiu R.A., Bîrcă A.C., Burdușel A.C., Grumezescu A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials (Basel). 2020. 10(11): 2318. https://doi.org/10.3390/nano10112318

16. Ullah Khan S., Saleh T.A., Wahab A., Khan M.HU., Khan D., UllahKhan W., Rahim A., Kamal S., UllahKhan F., Fahad S. Nanosilver: new ageless sand versatile biomedical therapeutic scaffold. Int. J. Nanomedicine. 2018. 13: 733. https://doi.org/10.2147/IJN.S153167

17. Marin S., Vlasceanu G.M., Tiplea R.E., Bucur I.R., Lemnaru M., Marin M.M., Grumezescu A.M. Applications and toxicity of silver nanoparticles: a recent review. Curr. Top. Med. Chem. 2015. 15(16): 1596. https://doi.org/10.2174/1568026615666150414142209

18. Liao C., Li Y., Tjong S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019. 20(2): 449. https://doi.org/10.3390/ijms20020449

19. Liu J., Zhang Li, Sun Y., Luo Y. Bifunctional Ag-Decorated CeO2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution. Nanomaterials. 2021. 11(5): 1104. https://doi.org/10.3390/nano11051104

20. Wang K., Wu Y., Li H., Li M., Guan F., Fan H. A hybrid antioxidizing and antibacterial material based on Ag-La2O3 nanocomposites. J. Inorg. Biochem. 2014. 141: 36. https://doi.org/10.1016/j.jinorgbio.2014.08.009

21. Putri G.E, Arief S., Jamarun N., Gusti F.R, Sary A.N. Characterization of Enhanced Antibacterial Effects of Silver Loaded Cerium Oxide Catalyst. Orient J. Chem. 2018. 34(6): 2895. https://doi.org/10.13005/ojc/340629

22. Tsai D.-Sh., Yang T.-S., Huang Yu-Sh., Peng P.-W., Ou K.-L. Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size. Int. J. Nanomed. 2016. 11: 2531. https://doi.org/10.2147/IJN.S103760

23. Liu Y., Wang M., Cao L.-J., Yang M.-Y., Cheng S. H.-S., Cao Ch.-W., Leung K.-L., Chung Ch.-Y., Lu Zh.-G. Interfacial redox reaction-directed synthesis of silver@cerium oxide coreeshell nanocomposites as catalysts for rechargeable lithiumeair Batteries. J. Power Sources. 2015. 286 () 136e144. https://doi.org/10.1016/j.jpowsour.2015.03.147

24. Murugadoss G., Kumar D. D., Kumar M. R., Venkatesh N. & Sakthivel P. Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Sci. Rep. 2021. 11: 1080. https://doi.org/10.1038/s41598-020-79993-6

25. Samai B., Chall S., Mati S.S., Bhattacharya S.Ch. Role of Silver Nanocluster in Enhanced Photocatalytic Activity of Cerium Oxide Nanoparticle. Eur. J. Inorg. Chem. 2018. 2018(27): 3224. https://doi.org/10.1002/ejic.201800230

26. Kayama T., Yamazaki K., Shinjoh H. Nanostructured ceria-silver synthesized in one‐pot redox reaction catalyzes carbon oxidation. J. Am. Chem. Soc. 2010. 132(38): 13154. https://doi.org/10.1021/ja105403x

27. Ferreira V.J., Tavares P., Figueiredo J.L., Faria J.L. Ce -Doped La2O3 based catalyst for the oxidative coupling of methane. Catal. Commun. 2013. 42: 50. https://doi.org/10.1016/j.catcom.2013.07.035




DOI: https://doi.org/10.15407/hftp12.04.382

Copyright (©) 2021 O, M. Lavrynenko, O. Yu. Pavlenko, M. N. Zahornyi, S. F. Korichev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.