Chemistry, Physics and Technology of Surface, 2010, 1 (4), 441-449.

Peculiarities of Synthesis of Nanodisperse Barium Titanate and Investigation of its Properties



S. V. Khalameida

Abstract


The interaction between barium oxide and titanium dioxide with different specific surface and crystalline structure by mechanochemichal, microwave and hydrothermal treatments have been investigated. It has been found by means of XRD, FTIR, ESR and UV-VIS spectroscopy that the use of low-temperature modification of TiO2 leads to the formation of barium titanate nanoparticles with high specific surface and defect structure. A definite increase was observed in absorption as well as shift of the absorption edge in the visible region, higher activity in the reaction of photocatalytic destruction of Safranin T in aqueous solutions for the synthesized samples of barium titanate. An enrichment of the surface by Bronsted basic centers occurs at when barium titanate is synthesized in an aqueous medium.

Full Text:

PDF (Русский)

References


Smith M.B., Page K., Siegrist T. et .al. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3 // J. Am. Chem. Soc. – 2008. – V. 130, N 22. – P. 6955–6963.

Kong L.B., Zhang T.S., Ma J. Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique // Prog. Mater. Sci. – 2008. – V. 53, N 2. – P. 207–322.

Ahuja S., Kutty T.R.N. Nanoparticles of SrTiOprepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol // J. Photochem. Photobiol. A. – 1996. – V. 97, N 1–2. – P. 99–107.

Wang J., Yin S., Komatsu M., et al. Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation // Appl. Catal. B. – 2004. – V. 52, N 1. – P. 11–21.

Zieliñska B., Borowiak-Palena E., Kalenczuka R.J. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors // Int. J. Hydrogen Energy. – 2008. – V. 33, N 7. – P. 1797–1802.

Giocordi J.L., Rohrer G.S. The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiOmicrocrystals // Top. Catal. – 2008. – V. 49. – P. 18–23.

Guin R., Das S.K., Saha S.K. Adsorption studies of zinc ions on barium titanate from aqueous solution // Radiochim. Acta. – 2002. – V. 90, N 1. – P. 53–56.

Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O. et al. Mechanochemical synthesis of barium titanate // J. Eur. Ceram. Soc. – 2005. – V. 25. – P. 1985–1989.

Miclea C., Tanasoiu C., Spanulescu I. et al. Microstructure and Properties of Barium Titanate Ceramics Prepared by Mechanochemical Synthesis // Rom. J. Inform. Sci. Technol. – 2007. – V. 10, N 4. – P. 335–345.

Sydorchuk V., Zazhigalov V., Khalameida S. et al. Investigation of physicochemical transformation at mechanochemical, hydrothermal and microwave treatment of barium titanyloxalate // J. Alloys Compd. – 2009. – V. 482, N 1–2. – P. 229–234.

Lee B.W., Choi C.S. Hydrothermal synthesis of barium titanate powders from a co-precipitated precursor // J. Ceram. Process. Res. –2003. – V. 4, N 3. – P. 151–154.

Newalkar B.L., Komarneni S., Katsuki H. Microwave-hydrothermal synthesis and characterization of barium titanate powders // Mater. Res. Bull. – 2001. – V. 36, N 13–14. – P. 2347–2355.

Demydov D., Labaunde K.J. Characterization of mixed metal oxides SrTiO3 and BaTiO3 synthesized by a modified aerogel procedure // J. Non-Cryst. Solids. – 2004. –V. 350. – P. 165–172.

Badheka P., Qi L., Lee B. Phase transition in barium titanate nanocrystals by chemical treatment // J. Eur. Ceram. Soc. – 2006. – V. 26, N 8. – P. 1393–1400.

Indris S., Amade R., Heitjans P. et al. Preparation by high- energy milling, characterization, and catalytic properties of nanocrystalline TiO2 // J. Phys. Chem. B. – 2005. – V. 109, N 49. – P. 23274–23278.

Pavlović V.P., Popović D., Krstić J., et al. Influence of mechanical activation on the structure of ultrafine BaTiO3 powders // J. Alloys Compd. – 2009. – V. 486, N 1–2. – P. 633–639.

Gesenhues U. The effects of plastic deformation on band gap, electronic defect states and lattice vibrations of rutile // J. Phys. Chem. Solids. – 2007. – V. 68, N 2. – P. 224–235.

Gupta V.K., Jain R., Mittal A. et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst // J. Colloid Interface Sci. – 2007. – V. 309, N 2. – P. 464-469.

Капинус Е.И., Викторова Т.И., Халявка Т.А. Зависимость скорости фотокаталитической деструкции сафранина от концентрации катализатора // Теорет. эксперим. химия. – 2009. – Т. 45, № 2. – С. 104–107.

Хайнике Г. Трибохимия. – Москва: Мир, 1987. – 569 с.

Lewis J.A. Colloidal processing of ceramics // J. Am. Ceram. Soc. – 2000. – V. 83, N 10. – P. 2341–2359.

Vamvakaki M., Billingham N.C., Armes S.P. et al. Controlled structure copolymers for the dispersion of high-perfomance ceramics in aqueous media // J. Mater. Chem. – 2001. – V. 11. – P. 2437–2444.

Shen Z.-G., Chen J.F., Zou H.-K., Yun J. Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrilate // J. Colloid Interface Sci. – 2004. – V. 275, N 1. – P. 158–164.

Blanco-Lopez M.C., Rand B., Riley F.L. The isoelectric point of BaTiO3 // J. Eur. Ceram. Soc. – 2000. – V. 20. – P. 107–118.

Hsu R.-C., Ying K.-L., Chen L.-P. Dispersion properties of BaTiO3 colloids with amphoteric polyelectrolites // J. Am. Ceram. Soc. – 2005. – V. 88, N 3. – P. 524–529.




Copyright (©) 2010 S. V. Khalameida

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.