Chemistry, Physics and Technology of Surface, 2023, 14 (3), 300-309.

Targeted requirements for biomedical nanomaterials based on dispersed oxides and textiles modified with metal NPS



DOI: https://doi.org/10.15407/hftp14.03.300

A. M. Eremenko, I. S. Petrik, A. V. Rudenko

Abstract


This article analyses some literature data and the authors’ developments in the technology of creating of  therapeutic depots in the form of films, dispersions of metal oxides and textiles with immobilized biocompatible silver nanoparticles (NPs) in the structure of SiO2, TiO2, cotton, biopolymers (alginate, chitosan, lignin, etc.), that have biocidal action, and future trends in this area. We and other researchers have developed methods for the synthesis of photocatalytically active TiO2 and SiO2 films, modified with gold/silver/copper NPs, suitable for medical use. An economical and simple low-temperature methods of manufacturing antimicrobial textiles by photo- or thermal activation and the possibility of their multiple use have been developed. The production of biomedical textiles is recently focused on the widespread use of non-toxic biopolymers, combined with textile. We have obtained compositions based on nanodispersed silica with polysaccharide sodium alginate and silver NPs with pronounced hemostatic and bactericidal properties. Obtaining a hybrid material based on a bactericidal textile combined with a dispersed oxide is promising for additional absorption of toxins and wound cleaning. The creation of such universal multifunctional materials includes their high bactericidal and antiviral multiply use. Hybrid materials based on metal NPs in the structure of carriers of different nature as films and dispersions of biocompatible oxides, biopolymers, textiles have a protection against possible toxic effects of nanoparticles and metal ions, self-cleaning capability, photocatalytic, hemostatic properties, temperature resistance, and other. The development and application of such materials is growing rapidly. So, materials based on Ag/SiO2 dispersions have high antibacterial and antiviral action (single application). Ag/SiO2 films can act as durable antibacterial cover.

There is an enhancement in the antibacterial properties of Ag-TiO2 NPs under visible light irradiation and the photocatalytic effect under UV light (single application in the powder form). Self-cleaning, antimicrobial and             UV-protective properties have Ag-TiO2 NPs in textile. Cotton modified with MeNPs demonstrates high efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours have been studied. The number of irreversibly bound particles in textile structure is sufficient for subsequent use. Modified fabrics are reusable. Composites based on metal NPs in the structure of silica or titania in the presence of biopolymers are effective hemostatic agents with a bactericidal effect. Sodium alginate has a reducing and stabilizing effect on nanoparticles, and silica prevents agglomeration of metal NPs in the resulting composite.

However, it is quite difficult to satisfy the numerous target requirements for biomedical nanomaterials based on metal NPs in the composition of dispersed oxides as well as textiles and/or biopolymers (“all in one”) to obtain a single universal multifunctional material that does not lose its properties during operation. It makes more sense to produce composites for purpose targeted applications, such as bactericidal and antiviral, hydrophobic coatings for laboratory surfaces, package and so on. Researches in this area are in progress.

Keywords


metal nanoparticles (NPs); metal oxide nanoparticles (MeONPs); biopolymers; colloids; SiO2 films; TiO2 nanoparticles; SiO2 dispersions; textile, bactericidal activity; hemostatic properties

Full Text:

PDF

References


Akhavan O., Ghaderi E. Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr. Appl. Phys. 2009. 9(6): 1381. https://doi.org/10.1016/j.cap.2009.03.003

Eremenko A., Smirnova N., Gnatiuk I., Linnik O., Vityuk N., Mukha I., Korduban A. Silver and Gold Nanoparticles on Sol-Gel TiO2, ZrO2, SiO2 Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties. In: Nanocomposites and Polymers with Analytical Methods. 2011. P. 51. https://doi.org/10.5772/18252

Assis M., Simoes L.G.P., Tremiliosi G.C., Coelho D., Minozzi D.T., Santos R.I., Vilela D.C.B., do Santos J.R., Ribeiro L.K., Rosa I.L.V., Mascaro L.H., Andrés J., Longo E. SiO2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. Nanomaterials. 2021. 11(3):638. https://doi.org/10.3390/nano11030638

Eremenko A., Petrik I., Rudenko A., Tananaiko O., Kyrpel T., Ishchenko M. Ion release and bactericidal activity of Ag /Tryptophan and Ag/Cu/Tryptophan complexes in the structure of cotton tissue. J. Nanomed. 2020. 3(1):1025. https://doi.org/10.33582/2578-8760/1025

Morena G., Tzanov T. Antibacterial lignin-based nanoparticles and their use in composite. Nanoscale Adv. 2022. 4(21): 4447. https://doi.org/10.1039/D2NA00423B

Kotb R.M., Elsayed N.A.A., Salama A.A.A. Promising modification of cotton fabric for multifunctional applications. Journal of Chemical and Pharmaceutical Research. 2014. 6(11): 900.

Petrik I., Kravchenko A., Eremenko A., Oranska O., Rudenko A., Hryts T., Malysheva M., Shtanova L., Yanchuk P., Tsymbalyuk O. Properties of hemostatic powders based on dispersed silica, sodium alginate and silver nanoparticles. Nanosystems, Nanomaterials, Nanotehnology. 2022. 20(1): 221. [in Ukrainian]. https://doi.org/10.15407/nnn.20.01.221

Kharissova O.V., Torres-Martinez L.M., Kharisov B.I. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. (Switzerland AG: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-36268-3

Bhattacharjee R., Kumar L., Mukerjee N., Anand U., Dhasmana A., Preetam S., Bhaumik S., Sihi S., Pal S., Khare T., Chattopadhyay S., El-Zahaby S.A., Alexiou A., Koshy E.P., Kumar V., Malik S., Dey A., Prockow J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomedicine & Pharmacotherapy. 2022. 155: 113658. https://doi.org/10.1016/j.biopha.2022.113658

Franco D., Calabrese G., Guglielmino S.P.P., Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Applications. Microorganisms. 2022. 10(9): 1778. https://doi.org/10.3390/microorganisms10091778

Mujeeb A.A., Khan N.A., Jamal F., Badre Alam K.F., Saeed H., Kazmi S., Alshameri A.W.F., Kashif M., Ghazi I., Owais M. Olax scandens. Biogenic Synthesis of Ag-Cu Nanocomposites: Potential Against Inhibition of Drug-Resistant Microbes. Front. Chem. 2020. 8: 103. https://doi.org/10.3389/fchem.2020.00103

Peretyazhko T.S., Zhang Q., Colvin V.L. Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic PH Conditions. Environ. Sci. Technol. 2014. 48(20): 11954. https://doi.org/10.1021/es5023202

Eremenko A., Petryk I., Mukha Y., Vityuk N., Smirnova N., Rudenko A. Pecularities of Synthesis and Bactericidal Priperties of Nanosilver in Colloidal Solutions, SiO2 Fiilms and in the Textile Structure: a Review. Him. Fiz. Tehnol. Poverhni. 2021. 12(4): 326. https://doi.org/10.15407/hftp12.04.326

Gu, G., Xu J., Wu Y., Chen M., Wu L. Synthesis and antibacterial property of hollow SiO2/Ag nanocomposite spheres. J. Colloid Interface Sci. 2011. 359(2): 327. https://doi.org/10.1016/j.jcis.2011.04.002

Cieslak M., Kowalczyk D., Krzyzowska M., Janicka M., Witczak E., Kaminska I. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. Materials. 2022. 15(17): 6164. https://doi.org/10.3390/ma15176164

Eremenko A., Petrik I., Smirnova N., Rudenko A., Marikvas Y. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Res. Lett. 2016. 11(28): 28. https://doi.org/10.1186/s11671-016-1240-0

El-Nahhal I.M., Elmanama A.A., Amara N., Qodih F.S., Selmane M., Chehimi M.M. The Efficacy of Surfactants in Stabilizing Coating of Nano-Structured CuO Particles onto the Surface of Cotton Fibers and Their Antimicrobial Activity. Mater. Chem. Phys. 2018. 215: 221. https://doi.org/10.1016/j.matchemphys.2018.05.012

Markovic D., Vasiljevic J., Asanin J., Ilic-Tomic T., Tomsic B., Jokic B., Mitric M., Simoncic B., Misic D., Radetic M. The Influence of Coating with Aminopropyl Triethoxysilane and CuO/Cu2O Nanoparticles on Antimicrobial Activity of Cotton Fabrics under Dark Conditions. J. Appl. Polym. Sci. 2020. 137(40): 49194. https://doi.org/10.1002/app.49194

Favatela M.F., Otarola J., Ayala-Pena V.B., Dolcini G., Perez S., Nicolini A.T., Alvarez V.A., Lassalle V.L. Development and Characterization of Antimicrobial Textiles from Chitosan-Based Compounds: Possible Biomaterials Against SARS-CoV-2 Viruses. J. Inorg. Organomet. Polym. Mater. 2022. 32: 1473. https://doi.org/10.1007/s10904-021-02192-x

Fan X., Yahia L'H., Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology. 2021. 10(2): 137. https://doi.org/10.3390/biology10020137

Ashkarran A.A., Aghigh S.M., Kavianipour M., Farahani N.J. Visible light photo and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl. Phys. 2011. 11(4): 1048. https://doi.org/10.1016/j.cap.2011.01.042

Mukha I., Eremenko A., Korchak G., Michienkova A. Antibacterial Action and Physicochemical Properties of Stabilized Silver and Gold Nanostructures on the Surface of Disperse Silica. J. Water Resour. Prot. 2010. 2(2): 131. https://doi.org/10.4236/jwarp.2010.22015

Eremenko A.M., Smirnova N.P., Mukha Yu.P., Yashan G.R. Nanoparticles of silver and gold in silica matrices: synthesis, properties and application. Theor. Exp. Chem. 2010. 46(2): 67. https://doi.org/10.1007/s11237-010-9122-5

Zheng Lu, Yinhao W., Shun Z., Kun Z., Yue S., Chengxin M. Multi-wave UV-photocatalysis system (UVA+UVC+VUV/Cu-N-TiO2) for efficient inactivation of microorganisms in ballast water. Mater. Express. 2021. 11(9): 1608. https://doi.org/10.1166/mex.2021.2062

Viet P.V., Phan B.T., Mott D., Maenosono S., Sang T.T., Thi C.M., Hieu L.V. Silver NPs Loaded TiO2 Nanotubes with High Photocatalytic and Antibacterial Activity. J. Photochem. Photobiol., A. 2018. 352: 106. https://doi.org/10.1016/j.jphotochem.2017.10.051

Xiao W., Xu J., Liu X., Hu Q., Huang J. Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J. Mater. Chem. B. 2013. 1(28): 3477. https://doi.org/10.1039/c3tb20303d

Liu Y., Wang X., Yang F., Yang X. Excellent Antimicrobial Properties of Mesoporous Anatase TiO2 and Ag/TiO2 Composite Films. Microporous Mesoporous Mater. 2008. 114(1-3): 431. https://doi.org/10.1016/j.micromeso.2008.01.032

Jalali S.A.H., Allafchian A.R., Banifatemi S.S., Ashrafi Tamai I. The antibacterial properties of Ag/TiO2 nanoparticles embedded in silane sol-gel matrix. J. Taiwan Inst. Chem. Eng. 2016. 66: 357. https://doi.org/10.1016/j.jtice.2016.06.011

Gupta K., Singh R.P., Pandey A., Pandey A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 2013. 4(1): 345. https://doi.org/10.3762/bjnano.4.40

Qin Y. Silver-containing alginate fibres and dressings. Int. Wound J. 2005. 2(2): 172. https://doi.org/10.1111/j.1742-4801.2005.00101.x

Goh C.H., Heng P.W.S., Chan L.W. Cross-linker and non-gelling Na+ effects on multi-functional alginate dressings. Carbohydr. Polym. 2012. 87(2): 1796. https://doi.org/10.1016/j.carbpol.2011.09.097

Shanmugasundaram O.L., Mahendra Gowda R.V. Development and characterization of cotton, organic cotton flat knit fabrics coated with chitosan, sodium alginate, calcium alginate polymers, and antibiotic drugs for wound healing. J. Ind. Text. 2012. 42(2): 156. https://doi.org/10.1177/1528083711432657

Tan G., Wang L., Pan W., Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int. J. Nanomedicine. 2022. 17: 3913. https://doi.org/10.2147/IJN.S371900

Rahimi M., Noruzi E.B., Sheykhsaran E., Ebadi B., Kariminezhad Z., Molaparast M., Mehrabani MG., Mehramouz B., Yousefi M., Ahmadi R., Yousefi B., Ganbarov K., Kamounah F.S., Shafiei-Irannejad V., Kafil H.S. Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr. Polym. 2020. 231: 115696. https://doi.org/10.1016/j.carbpol.2019.115696

Anaya-Esparza L.M., Villagrán-de la Mora Z., Ruvalcaba-Gómez J.M., Romero-Toledo R., Sandoval-Contreras T., Aguilera-Aguirre S., Montalvo-González E., Pérez-Larios A. Use of Titanium Dioxide (TiO2) Nanoparticles as Reinforcement Agent of Polysaccharide-Based Materials. Processes. 2020. 8(11): 1395. https://doi.org/10.3390/pr8111395

De Moura M.R., Zucolotto V., Aouada F.A., Mattoso L.H.C. Efficiency Improvement of Cellulose Derivative Nanocomposite Using Titanium Dioxide Nanoparticles. J. Nanosci. Nanotechnol. 2017. 17(3): 2206. https://doi.org/10.1166/jnn.2017.13029

Dai J., Tian Q., Sun Q., Wei W., Zhuang J., Liu M., Cao Zhen., Xie W., Fan M. TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Composites, Part B. 2019. 160: 480. https://doi.org/10.1016/j.compositesb.2018.12.097

Ismail N.A., Amin K.A.M., Majid F.A.A., Razali M.H. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater. Sci. Eng. C. 2019. 103: 109770. https://doi.org/10.1016/j.msec.2019.109770

Al-Mokaram A., Yahya R., Abdi M.M., Ekramul Mahmud H.N.M. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole-Chitosan-Titanium Dioxide Nanocomposite Films. Nanomaterials. 2017. 7(6): 129. https://doi.org/10.3390/nano7060129

Rodriguez-Gonzalez V., Obregon S., Patron-Soberano O.A., Terashima C., Fujishima A. An Approach to the Photocatalytic Mechanism in the TiO2-Nanomaterials Microorganism Interface. Appl. Catal., B. 2020. 270: 118853. https://doi.org/10.1016/j.apcatb.2020.118853

Ladniak A., Jurak M., Palusinska-Szysz M., Wiącek A.E. The Influence of Polysaccharides/TiO2 on the Model Membranes of DPPG and Bacterial Lipids. Molecules. 2022. 27(2): 343. https://doi.org/10.3390/molecules27020343

Zhang X., Xiao G., Wang Y., Zhao Y., Su H., Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 2017. 169: 101. https://doi.org/10.1016/j.carbpol.2017.03.073

Bui V.K.H., Park D., Lee Y.-C. Chitosan Combined with ZnO, TiO2 and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers. 2017. 9(1): 21. https://doi.org/10.3390/polym9010021

Besinis A., De Peralta T., Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014. 8(1): 1. https://doi.org/10.3109/17435390.2012.742935




DOI: https://doi.org/10.15407/hftp14.03.300

Copyright (©) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.