Chemistry, Physics and Technology of Surface, 2023, 14 (3), 310-323.

Formation and stability of gold nanoparticles in colloids prepared by citrate method



DOI: https://doi.org/10.15407/hftp14.03.310

N. V. Vityuk, A. M. Eremenko, N. M. Rusinchuk, V. Z. Lozovski, M. M. Lokshyn, V. S. Lysenko, Iu. P. Mukha

Abstract


Gold nanoparticles (Au NPs) have found a variety of applications in different areas, particularly in biomedical practices. The activity of Au NPs strongly depends on the size and association of particles in colloid, that in turn are greatly affected by experimental parameters of the reaction. The obtaining of Au NPs even via classical procedure of citrate method can be a challenge.

In the present work we applied different experimental approaches to affect the process of Au NPs formation in the presence of sodium citrate. Au NPs were obtained using different experimental procedures and varying the ratio of reagents, their concentrations, temperature of reaction, duration of heating, the order of introduction of reagents into the reaction mixture, pH, and so on. Comparative analyses of UV-vis spectra with DLS data by number, volume and intensity basis allowed to trace the changes in Au NPs colloid, find optimal experimental conditions and predict prolonged stability of colloids. Applying size-dependent Hamaker constant to DLVO theory explains experimental results.

The formation of Au NPs strongly depends on the ratio of the functional groups of the molecule involved simultaneously in the reduction of metal ions, the binding to the surface of Au NPs and the formation of a charge for stabilization due to electrostatic repulsion. The change in the ratio of components is not enough to get a different size of Au NPs. Big concentration of the reagents mostly affects the aggregation process and colloid aging. Temperature is a critical activation factor, that should be about 100 °C, but prolonged heating causes collision induced aggregation. The initial stage of particles growth (the mechanism) can be affected with the change of pH of the system due to formation of deprotonated carboxyl groups and gold hydroxocomplexes.


Keywords


gold nanoparticlesж colloidsж sodium citrate

Full Text:

PDF

References


Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Spec. Discuss. Faraday Soc. Special. 1951. 11: 55. https://doi.org/10.1039/df9511100055

Holmes H.N. Experiments in Colloid Chemistry (Hauser, E. A.; Lynn, J. E.). J. Chem. Educ. 1941. 18(7): 349. https://doi.org/10.1021/ed018p349.4

Enustun B.V., Turkevich J.J. Coagulation of Colloidal Gold. J. Am. Chem. Soc. 1963. 85(21): 3317. https://doi.org/10.1021/ja00904a001

Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B. 2006. 110(32): 15700. https://doi.org/10.1021/jp061667w

Pong B.-K., Elim H.I., Chong J.-X., Ji W., Trout B.L., Lee J.Y. New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties. J. Phys. Chem. C. 2007. 111(17): 6281. https://doi.org/10.1021/jp068666o

Ji X., Song X., Li J., Bai Y., Yang W., Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 2007. 129(45): 13939. https://doi.org/10.1021/ja074447k

Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation. J. Am. Chem. Soc. 2010. 132(4): 1296. https://doi.org/10.1021/ja906506j

Mandal M., Ghosh S.K., Kundu S., Esumi K., Pal T. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles. Langmuir. 2002. 18(21): 7792. https://doi.org/10.1021/la0118107

Madras G., McCoy B.J. Ostwald ripening with size-dependent rates: Similarity and power-law solutions. J. Chem. Phys. 2002. 117(17): 8042. https://doi.org/10.1063/1.1510769

Reiss H. The Statistical Mechanical Theory of Irreversible Condensation. J. Chem. Phys. 1952. 20(8): 1216. https://doi.org/10.1063/1.1700715

Peng X., Wickham J., Alivisatos A.P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions. J. Am. Chem. Soc. 1998. 120(21): 5343. https://doi.org/10.1021/ja9805425

Daniel M.C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004. 104(1): 293. https://doi.org/10.1021/cr030698+

Ohshima H. Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental Sciences. (John Wiley & Sons. INC., publication, 2012). https://doi.org/10.1002/9781118135440

Boström M., Williams D.R.M., Ninham B.W. Specific Ion Effects: Why DLVO Theory Fails for Biology and Colloid Systems. Phys. Rev. Lett. 2001. 87(16): 168103. https://doi.org/10.1103/PhysRevLett.87.168103

Zareei M., Yoozbashizadeh H., Hosseini H.R.M. Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory. J. Therm. Anal. Calorim. 2019. 135: 1. https://doi.org/10.1007/s10973-018-7620-1

Trefalt G., Borkovec M. Overview of DLVO Theory. 2014.

Gregory J. Approximate expressions for retarded van der waals interaction. J. Colloid Interface Sci. 1981. 83(1): 138. https://doi.org/10.1016/0021-9797(81)90018-7

Pinchuk P., Jiang K. Size-dependent Hamaker constants for silver and gold nanoparticles. Phys. Chem. Interfaces and Nanomater. XIV. 2015. 9549: 95491J-1. https://doi.org/10.1117/12.2187282

Gregory J. Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 1963. 51(1): 44. https://doi.org/10.1016/0021-9797(75)90081-8

Russel W.B. Colloidal Dispersions. (New Jersey: Princeton University, 1989). https://doi.org/10.1017/CBO9780511608810




DOI: https://doi.org/10.15407/hftp14.03.310

Copyright (©) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.