Interaction of rivanol with molecules of deoxyribonucleic acid (DNA) sorbed onto nanocrystalline titania surface
DOI: https://doi.org/10.15407/hftp14.03.341
Abstract
Сreation of new therapeutic materials based on nucleic acids encourages the combination of the latter with materials capable of adsorbing them. One of the most promising materials for such purposes is nanocrystalline titanium dioxide due to its low toxicity, stability of its physical and chemical parameters, and high biocompatibility. Accordingly, understanding the nature of the interaction of the surface of titanium oxide with biologically active substances is a very important issue. It is also always a relevant question whether the biopolymer immobilized on the surface of a solid remains capable of serving as a reservoir for drug delivery or a tool for the treatment of a particular disease.
The aim of the work was to investigate the interaction of the biologically active substance rivanol with the surface of DNA-containing titanium dioxide. It has been found that prior adsorption of deoxyribonucleic acid on the surface of titanium dioxide does not prevent its interaction with rivanol, which was confirmed by the methods of electron spectroscopy, atomic force and scanning electron microscopy. The mode of interaction of rivanol with deoxyribonucleic acid depends on the ratio of their concentrations and can be either intercalated or semi-intercalated, and electrostatic. Based on the calculated thermodynamic characteristics, the process of interaction of deoxyribonucleic acid adsorbed on the surface of a solid carrier is arbitrary and occurs by an ion exchange mechanism. These hybrid organo-mineral sorbents can serve as model structures for research in biotechnological fields, be used for the development of new methods of drug or gene delivery, reservoir systems at a molecular level, and serve as biocompatible carriers. The creation of organo-mineral sorbents, which combine nucleic acids and metal oxides, contributes to the stabilization of such systems and expands the scope of their possible application in medicine and biotechnology, increasing their target specificity.
Keywords
References
Paunesku T., Rajh T. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2003. 2(5): 343. https://doi.org/10.1038/nmat875
Suzuki H., Amano T., Toyooka T. Preparation of DNA-adsorbed TiO2 particles with high performance for purification of chemical pollutants. Environ. Sci. Technol. 2008. 42(21): 8076. https://doi.org/10.1021/es800948d
Abu-Salah Kh.M., Ansari A.A., Alrokayan S.A. DNA-Based Applications in Nanobiotechnology. J. Biomed. Biotechnol. 2010. 2010: 715295. https://doi.org/10.1155/2010/715295
Sun Y., Kiang C-H. DNA-based artificial nanostructures: Fabrication, properties, and applications. In: Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology. V. 1-2. (American Scientific Publishers, 2005).
Pautler R., Kelly E.Y., Huang P-J. J., Cao J., Liu B., Liu J. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces. 2013. 5(15): 6820. https://doi.org/10.1021/am4018863
Soni A., Khurana P., Singh T., Yayaram B. A DNA intercalation methodology for an efficient prediction of ligand binding pose and energetics. Bioinformatics. 2017. 33(10): 1488. https://doi.org/10.1093/bioinformatics/btx006
Fahrenkopf N.M., Shahedipour-Sandvik F., Tokranova N., Bergkvist M., Cady N.C. Direct attachment of DNA to semiconducting surfaces for biosensor applications. J. Biotechnol. 2010. 150(3): 312. https://doi.org/10.1016/j.jbiotec.2010.09.946
Fahrenkopf N.M., Rice P.Z., Bergkvist M., Deskins N.A., Cady N.C. Immobilization mechanism of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surface for biosensing applications. ACS. Appl. Mater. Interfaces. 2012. 4(10): 5360. https://doi.org/10.1021/am3013032
Ruan W., Zheng M., An Y., Liu Y., Lovejoy D.B., Hao M., Zou Y., Lee A., Yang S., Lu Y., Morsch M., Chung R., Shi B. DNA nanoclew templated spherical nucleic acids for siRNA delivery. Chem. Commun. 2018. 54(29): 3609. https://doi.org/10.1039/C7CC09257A
Linko V., Ora A., Kostiainen M.A. DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol. 2015. 33(10): 586. https://doi.org/10.1016/j.tibtech.2015.08.001
Hu Y., Chen Z., Zhang H., Li M., Hou Z., Luo X., Xue X. Development of DNA tetrahedron-based drug delivery system. Drug Delivery. 2017. 24(1): 1295. https://doi.org/10.1080/10717544.2017.1373166
Jiang Q., Liu S., Liu J., Wang Z.-G., Ding B. Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv. Mater. 2019. 31(45): e1804785. https://doi.org/10.1002/adma.201804785
Waring M.J. DNA Modification and Cancer. Annu. Rev. Biochem. 1981. 50(1): 159. https://doi.org/10.1146/annurev.bi.50.070181.001111
Zhang Q., Jiang Q., Li N., Dai L., Liu Q., Song L., Wang J., Li Y., Tian J., Ding B., Du Y. DNA Origami as an In Vivo Drug Delivery Vehicle for Cancer Therapy. ACS Nano. 2014. 8(7): 6633. https://doi.org/10.1021/nn502058j
Hurley L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer. 2002. 2(3): 188. https://doi.org/10.1038/nrc749
Zhao Y.-X., Shaw A., Zeng X., Benson E., Nyström A.M., Högberg B. DNA Origami Delivery System for Cancer Therapy with Tunable Release Properties. ACS Nano. 2012. 6(10): 8684. https://doi.org/10.1021/nn3022662
Mukherjee A., Sasikala W.D. Drug-DNA intercalation: From discovery to the molecular mechanism. Rev. Adv. Protein Chem. Struct. Biol. 2013. 92: 1-62. https://doi.org/10.1016/B978-0-12-411636-8.00001-8
Zhuang X., Ma X., Xue X., Jiang Q., Song L., Dai L., Zhang C., Jin S., Yang K., Ding B., Wang P.C., Liang X.-J. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. ACS Nano. 2016. 10(3): 3486. https://doi.org/10.1021/acsnano.5b07671
Seeman N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982. 99(2): 237. https://doi.org/10.1016/0022-5193(82)90002-9
Dietz H., Douglas S.M., Shih W.M. Folding DNA into Twisted and Curved Nanoscale Shapes. Science. 2009. 325(5941): 725. https://doi.org/10.1126/science.1174251
Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H. DNA Origami with Complex Curvatures in Three-Dimensional Space. Science. 2011. 332(6027): 342. https://doi.org/10.1126/science.1202998
Rothemund P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature. 2006. 440(7082): 297. https://doi.org/10.1038/nature04586
Lee J., Mahendra S., Alvarez P.J.J. Nanomaterials in construction industry:A review of their applications and environmental health and safety considerations. ACS Nano. 2010. 4(7): 3580. https://doi.org/10.1021/nn100866w
Gagner J.E., Shrivastava S., Qian X., Dordick J.S., Siegel R.W. Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface: A perspective. J. Phys. Chem. Lett. 2012. 3(21): 3149. https://doi.org/10.1021/jz301253s
Moghimi S.M., Hunter A.C., Murray J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005. 19(3): 311. https://doi.org/10.1096/fj.04-2747rev
Moyano D.F., Rotello V.M. Nano meets biology. Structure and function of the nanoparticle interface. Langmuir. 2011. 27(17): 10276. https://doi.org/10.1021/la2004535
Fishre J., Egerton T.A. Titanium Compounds. In: Inorganic Kirk-Othmer Encyclopedia of Chemical Technology. (New York: Wiley-Interscience, 2001). https://doi.org/10.1002/0471238961.0914151805070518.a01.pub2
Ai J., Biazar E., Jafarpour M., Montazeri M., Majdi A., Aminifard S., Zafari M., Akbari H.R., Rad H.G. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 2011. 6: 1117. https://doi.org/10.2147/IJN.S16603
Stark W.J. Nanoparticles in bioilogical systems. Ang. Chem. Int. Ed. 2011. 50(6): 1242. https://doi.org/10.1002/anie.200906684
Shemetov A.A., Nabiev I., Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 2012. 6(6): 4585. https://doi.org/10.1021/nn300415x
Sundgren J.-E., Bodö P., Lundström I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J. Colloid Interface Sci. 1986. 110(1): 9. https://doi.org/10.1016/0021-9797(86)90348-6
Stoch A., Jastrzebski W., Brozek A., Stoch J., Szaraniec J., Trybalska B., Kmita G. FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants. J. Mol. Struct. 2000. 555(1-3): 375. https://doi.org/10.1016/S0022-2860(00)00623-2
Engholm-Keller K., Larsen M.R. Titanium dioxide as chemoaffinity chromatographic sorbent of biomolecular compounds- applications in acidic modification-specific proteomics. J. Proteomics. 2011. 75(2): 317. https://doi.org/10.1016/j.jprot.2011.07.024
Lane A.N., Jenkins T.C. Thermodynamics of Nucleic Acids and Their Interactions with Ligands. Rev. Biophys. 2000. 33(3): 255. https://doi.org/10.1017/S0033583500003632
Heterocyclic compounds / Ed. Elderfield R. T. 4.(Moscow: Publishing House of Foreign Literature, 1955). [in Russian].
Lerman L.S. Structural consideration of the interaction of DNA and acridines. J. Mol. Biol. 1961. 3(1): 18. https://doi.org/10.1016/S0022-2836(61)80004-1
Lenglet G., David-Cordonnier M.-H. DNA-destabilizing agents as an alternative approach for targeting DNA: Mechanisms of action and cellular consequences. J. Nucleic Acids. 2010. 2010: 1. https://doi.org/10.4061/2010/290935
Koster D.A., Palle K., Bot E.S.M., Bjornsti M-A., Dekker N.H. Antitumour drugs impede DNA uncoiling by opoisomerase I. Nature. 2007. 448(7150): 213. https://doi.org/10.1038/nature05938
Biebricher A.S., Heller I., Roijmans R.F.H., Hoekstra T.P., Peterman E.J.G., Muite G.J.L. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat. Commun. 2015. 6(7304): 1. https://doi.org/10.1038/ncomms8304
Tse W.C., Boger D.L. Sequence-selective DNA recognition: Natural products and nature's lessons. Chem. Biol. 2004. 11(12): 1607. https://doi.org/10.1016/j.chembiol.2003.08.012
Wang A.H., Ughetto G., Quigley G.J, Rich A. Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution. Biochemistry. 1987. 26(4): 1152. https://doi.org/10.1021/bi00378a025
Albert A. Selective Toxicity. (Moscow: Meditsina, 1989). [in Russian].
Dawson R.M.C, Elliot D.C, Elliot W.H, Jones K.M. Data for Biochemical Research. (Clarendon Press, Oxford, 1986).
Tuite E., Kelly J.M. The Interaction of Methylene Blue, Azure B, and Thionine with DNA: Formation of Complexes with Polynucleotides and Mononucleotides as Model Systems. Biopolymers. 1995. 35: 419. https://doi.org/10.1002/bip.360350502
Aslanoglu M. Electrochemical and spectroscopic studies of the interaction of proflavine with DNA. Anal. Sci. 2006. 22(3): 439. https://doi.org/10.2116/analsci.22.439
Bereznyak E.G., Gladkovskaya N.A., Khrebtova A.S., Dukhopelnikov E.V., Zinchenko A.V. Peculiarities of DNA-Proflavine Binding under Different Concentration Ratios. Biophysics. 2009. 54(5): 574. https://doi.org/10.1134/S0006350909050030
Moroshkina E.B. Intercalation as a mode of biological active compound binding with double-stranded DNA. Vestnik of Saint Petersburg University. Ser 4. 2011. 4: 114. [in Russian].
Wakelin L.P.G., Waring M.J. Kinetics of drug-DNA interaction. J. Mol. Biol. 1980. 144(2): 183. https://doi.org/10.1016/0022-2836(80)90032-7
Muller W., Crothers D.M. Interactions of Heteroaromatic Compounds with Nucleic Acids. Eur. J. Biochem. 1975. 54(1): 267. https://doi.org/10.1111/j.1432-1033.1975.tb04137.x
Chernyshev D.N., Buchelnikov A.S., Mukhina Yu.V., Baranovsky S.F. Spectrophotometric analysis of the binding of aromatic biologically active compounds to DNA. Visnyk of SevNTU: Series: Physics of biological systems and molecules. 2011. 113: 57. [in Russian].
Li W.-Y., X J.-G., Guo X.-Q., Zhu Q.-Z., Zhao Y.-B. Study on the interaction between rivanol and DNA tind its application to DNA assay. Spectrochim. Acta, Part A. 1997. 53: 781. https://doi.org/10.1016/S1386-1425(97)00015-2
Haugen G.H., Melhuish W.H. Association and self-quenching of proflavine in water. Trans. Faraday Soc. 1964. 60: 386. https://doi.org/10.1039/tf9646000386
Schulman S.G., Naik D.V., Capomacchia A.C., Roy T. Electronic Spectra and Electronic Structures of Some Antimicrobials Derived from Proflavine. J. Pharm. Sci. 1975. 64(6): 982. https://doi.org/10.1002/jps.2600640619
Bloomfield V.A., Crothersn D.M., Tinoco I. Physical chemistry of nucleic acids. (New York: Harper and Row, 1974).
Mc Ghee I.D., von Hippel P.N. Theoretical aspects of DNA-protein interactions: Cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974. 86(2): 469. https://doi.org/10.1016/0022-2836(74)90031-X
Georghiou S. Interaction of acridine drugs with DNA and nucleotides. Photochem. Photobiol. 1977. 26(1): 59. https://doi.org/10.1111/j.1751-1097.1977.tb07450.x
Sasikala W.D., Mukherjee A. Structure and dynamics of proflavine association around DNA. Phys. Chem. Chem. Phys. 2016. 18(15): 10383. https://doi.org/10.1039/C5CP07789C
Vlasova N.M., Markitan O.V. Surface complexation modeling of biomolecule adsorptions onto titania. Colloids and Interfaces. 2019. 3(28): 1. https://doi.org/10.3390/colloids3010028
Vlasova N.M., Markitan O.V. Adsorption complexes of purine nucleotides on the surface of titanium dioxide. Colloid. J. 2019. 81(1): 16. [in Russian]. https://doi.org/10.1134/S1061933X19010149
Vlasova N.N., Markitan O.V. Adsorption of pyrimidine nucleotides on the surface of titanium dioxide. Colloid. J. 2018. 80(4): 379. [in Russian]. https://doi.org/10.1134/S1061933X18040142
Vlasova N.N., Golovkova L.P., Stukalina N.G. Adsorption complexes of diamino derivatives of acridine on the surface of silica. Colloid. J. 2012. 74(1): 25. [in Russian]. https://doi.org/10.1134/S1061933X12010176
Nafisi S., Saboury A.A., Keramat N., Neault J-F. Stability and structural features of DNA intercalation with ethidiume bromide, acridine orange and methylene blue. J. Mol. Struct. 2007. 827(1-3): 35. https://doi.org/10.1016/j.molstruc.2006.05.004
Lee C. H., Chang C-T., Wetmur J.G. Induced Circular Dichroism of DNA-Dye Complexes. Biopolymers. 1973. 12(5): 1099. https://doi.org/10.1002/bip.1973.360120514
Strekowski L., Wilson B. Noncovalent interactions with DNA: An overview. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2007. 623(1−2): 3. https://doi.org/10.1016/j.mrfmmm.2007.03.008
Ihmels H., Otto D. Intercalation of Organic dye molecules into double-stranded DNA - General principles and recent developments. Top. Curr. Chem. 2005. 258: 161. https://doi.org/10.1007/b135804
Shaikh S.A., Ahmed S.R., Jayaram B. A molecular thermodynamic view of DNA-drug interactions: A case study of 25 minor-groove binders. Arch. Biochem. Biophys. 2004. 429: 81. https://doi.org/10.1016/j.abb.2004.05.019
Langmuir I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916. 38: 2221. https://doi.org/10.1021/ja02268a002
Freundlich H.M.F. Űber die Adsorption in Lösungen. Z. Phys. Chem. 1906. 57: 385. https://doi.org/10.1515/zpch-1907-5723
Dubinin M.M., Radushkevich L.V. On the equation of the characteristic curve for active coals. Proceedings of the USSR Academy of Sciences. 1947. 55: 331.
Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T. Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Ind. Eng. Chem. Fundam. 1966. 5: 212. https://doi.org/10.1021/i160018a011
Baranovskii S.F., Bolotin P.A., Evstigneev M.P., Chernyshev D.N. Complexation of heterocyclic ligands with DNA in aqueous solution. J. Appl. Spectroscopy. 2008. 75(2): 251. https://doi.org/10.1007/s10812-008-9021-x
DOI: https://doi.org/10.15407/hftp14.03.341
Copyright (©) 2023 O. V. Markitan, N. N. Vlasova, Y. V. Sheludko
This work is licensed under a Creative Commons Attribution 4.0 International License.