Hong-Ou-Mandel quantum effect on “expanded graphite - cnts” composites
DOI: https://doi.org/10.15407/hftp14.03.387
Abstract
We investigated influence of multiwalled carbon nanotubes (CNTs) on spectral characteristics of composites “thermo-expanded graphite – carbon nanotubes (TEG–CNTs)”. The introduction of CNTs in an amount of 0-3% by weight of TEG composites results in a significant increase in the strength characteristics and thermal stability of the composites. This result indicates that CNTs is ideal filler for composites based on TEG compositions and structures. Measurements the giant two-polar oscillations with very small half-width 0.5 cm–1 testify the strong interaction of surface polaritons with photons. When frequencies of local oscillations of surface bonds of carbon nanotubes and modes along “nanotube-TEG” boundaries matches, then the light absorption increases 102–105 times.
Thus, IR absorption with two-polar oscillations was measured at 0% of nanotubes in TEG at frequency of 2750 cm–1. It is own optical mode in the thermally expanded graphite. 5 peaks with two-polar oscillations were measured in the IR absorption spectra at 1% of carbon nanotubes. And 8 peaks with two-polar oscillations were measured at 3 % of carbon nanotubes at optical mode frequencies along the boundaries of thermally expanded graphite - carbon nanotubes. When frequencies of local oscillations of carbon nanotubes and composite’s modes matches, then the light absorption extremely increases (in 102–105 times), and two-polar IR absorption oscillations with negative components are formed.
In general, two-photon interference is a result of quantum entanglement of dipole-active oscillations and splitting of photons according to the Hong-Ou-Mendel (HOM) quantum effect. Two-photon entanglement is built on the basis of the most entanglement states, also known as Bell's states. The HOM–quantum effect on composites “expanded graphite-carbon nanotubes” is promising for the development of highly coherent optical quantum computers.
Keywords
References
Sementsov Yu.I. Formation of Structure and Properties of sp2-Carbon Nanomaterials and Functional Composites with Their Participation. (Kyiv: Interservis, 2019).
Kartel M., Sementsov Y., Dovbeshko G., Karachevtseva L., Makhno S., Aleksyeyeva T., Grebel'na Y., Styopkin V., Wang B., Stubrov Y. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428
Treacy M., Ebbesen T., Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0
Bokobza L. Multiwall carbon nanotube elastomeric composites. Polymer. 2007. 48(17): 4907. https://doi.org/10.1016/j.polymer.2007.06.046
Bauhofer W., Kovacs J. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018
Lacerda L., Bianco A., Prato M., Kostarelos M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Del. Rev. 2006. 58(14): 1460. https://doi.org/10.1016/j.addr.2006.09.015
Wilder M., Venema L., Rinzler A., Smalle R., Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998. 391: 59. https://doi.org/10.1038/34139
Fan S., Chapline M., Franklin N., Tombler T., Cassell A., Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999. 283(5401): 512. https://doi.org/10.1126/science.283.5401.512
Wei B., Vajtai R., Ajayan P. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001. 79(8): 1172. https://doi.org/10.1063/1.1396632
Zou G., Yang H., Jain M., Zhou H., Williams D., Zhou M., McCleskey T., Burrell A., Jia Q. Vertical connection of carbon nanotubes to silicon at room temperature using a chemical route. 2009. Carbon. 47(4): 933. https://doi.org/10.1016/j.carbon.2008.11.017
Thostenson E., Ren Z., Chou T-W. Advances in the Science and Technology of Carbon Nanotubes and their Composites. A Review. Compos. Sci. Technol. 2001. 61(13): 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
Kompan M., Aksyanov I. Near-UV narrow-band luminescene of polyethylene and polytetrafluoroethylene. Phys. Solid State. 2009. 51: 1083. https://doi.org/10.1134/S1063783409050291
Trachevskiy V., Kartel M., Sementsov Yu., Ilina K., Wang Bo. Modification of Rubbers with Carbon Nanotubes. Int. J. Recent Sci. Res. 20178(7): 18822.
Karachevtseva L.A., Kartel M.T., Lytvynenko O.O., Onyshchenko V.F., Parshyn K.A., Stronska O.J. Polymer-nanoparticle coatings on macroporous silicon matrix. Adv. Mater. Lett. 2017. 8(4): 336. https://doi.org/10.5185/amlett.2017.1412
Karachevtseva L., Kartel M., Bo Wang, Sementsov Yu., Trachevskyi V., Lytvynenko O., Onyshchenko V. Formation of carbon sp3 hybridization bonds in local electric fields of composites "polymer-CNT". Adv. Mater. Lett. 2018. 9(4): 296. https://doi.org/10.5185/amlett.2018.1964
Karachevtseva L.A., Kartel M.T., Lytvynenko O.O. 1D and 2D polaritons in macroporous silicon structures with nano-coatings. Him. Fiz. Tehnol. Poverhni. 2021. 11(1): 9. https://doi.org/10.15407/hftp12.01.009
Vidano R., Fishbach D. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981. 39(2): 341. https://doi.org/10.1016/0038-1098(81)90686-4
Vidano R., Fischbach D.B. New bands in the Raman spectra of carbons and graphite. J. Am. Ceram. Soc. 1978. 61(1-2): 13. https://doi.org/10.1111/j.1151-2916.1978.tb09219.x
Vinogradov E.A. Semiconductor microcavity polaritons. Physics-Uspekhi. 2002. 45(12): 1213. https://doi.org/10.1070/PU2002v045n12ABEH001189
Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. J. Exp. Theor. Phys. 1979. 50: 486.
Ou Z., Hong C., Mandel L. Relation between input and output states for a beam splitter. Opt. Commun. 1987. 63(2): 118. https://doi.org/10.1016/0030-4018(87)90271-9
Kartel M.T., Karachevtseva L.A., Sementsov Yu.I., Lytvynenko O.O. Hong-Ou-Mandel quantum effect on "polymer - multiwall CNT" composites. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 170. https://doi.org/10.15407/hftp13.02.170
DOI: https://doi.org/10.15407/hftp14.03.387
Copyright (©) 2023
This work is licensed under a Creative Commons Attribution 4.0 International License.