Synthesis of Ni and Cu nanopowders by electrolysis
DOI: https://doi.org/10.15407/hftp14.03.393
Abstract
The preparation of ceramic composites based on metal nanopowders allows us to change significantly the thermal characteristics of the ceramic matrix, which is important for the creation of heat-conducting ceramics technology.
The work establishes the most efficient method of obtaining nickel nanopowder on a “P-5848” potentiostat by electrolysis of nickel sulfate (NiSO4) with the addition of boric acid (H3BO3), thiourea ((NH4)2CS) and nickel(II) chloride (NiCl2). The synthesis of Ni nanopowder was carried out at a current density from 1.0 to 3.3 A/dm2 and at a temperature of 45–65 °C, where a platinum (Pt) plate was chosen as an anode, and the cathode was specially made of especially pure aluminum (Al). The results of the study showed the synthesis of Ni nanopowder with a size of 55 nm in the form of thin scales. Electrochemical reactions at the cathode and anode are also considered in the work.
Several successful experiments were also carried out in the work, which made it possible to develop an economically profitable technology for the synthesis of copper nanopowder by the electrolysis method at 13.3 ampere-hours of current per 1 dm2 of the anode surface at a relatively low temperature of the copper sulfate solution (CuSO4). Copper nanopowder is removed to the bottom of the bath from the anode by impact shaking. An equally successful experiment was carried out, where the cathode was in the form of several copper plates at the distance of 0.8 cm from each other with a voltage between them of 0.775 V, and a current density of 15.3 A/dm2 at the temperature of 54 °С in an electrolyte with 45 % H2SO4, 8 % Na2SO4 and 4 % CuSO4.
The work contains tables with initial and final data of all experiments on the synthesis of nanopowders by the electrolysis method.
Keywords
References
Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security, PartF2. 2008. P. 53.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Yu., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, nanomateriali, nanotehnologii. 2022. 20(3): 725. https://doi.org/10.15407/nnn.20.03.725
Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016
Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4
Lad'yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Phys. Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206
Matysina Z. A., Zolotarenko Ol. D.,. Rudakova O. P., Akhanova N. Y., Pomytkin A. P., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.
Sementsov Yu.I., Cherniuk O.A., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135
Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007. P. 199. https://doi.org/10.1007/978-1-4020-5514-0_25
Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9
Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. J. Non-Cryst. Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010
Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Appl. Nanosci. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2
Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surf. Eng. Appl. Electrochem. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027
Matysina Z. A, Zolotarenko Ol. D., Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N. A. , Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.
Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Phys. Status Solidi A. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358
Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russ. J. Appl. Chem. 2001. 74(10): 1765.https://doi.org/10.1023/A:1014894211046
Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209.
Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Tech. Phys. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X
Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. J. Alloys Compd. 2011. 509(2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155
Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179
Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.I., Kartel M.T., Sementsov Yu.I. Influence of nanofiller on the structure and properties of macromolecular compounds. Phys. Chem. Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400
Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16
Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Appl. Nanosci. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6
Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142.https://doi.org/10.1016/j.apsusc.2017.10.029
Kozak A.O., Porada O.K., Ivashchenko V.I., Ivashchenko L.A., Scrynskyy P.L., Tomila T.V., Manzhara V.S. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering. Appl. Surf. Sci. 2017. 425: 646. https://doi.org/10.1016/j.apsusc.2017.06.332
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Simulations of indentation-induced phase transformations in crystalline and amorphous silicon. Phys. Rev. B. 2008. 78(3): 035205. https://doi.org/10.1103/PhysRevB.78.035205
Krupskaya T.V., Turov V.V., Barvinchenko V.M., Filatova K.O., Suvorova L.A., Iraci G., Kartel M.T. Influence of the "wetting-drying" compaction on the adsorptive characteristics of nanosilica A-300. Adsorpt. Sci. Technol. 2018. 36(1-2): 300. https://doi.org/10.1177/0263617417691768
Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020
Barany S., Kartel N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid J. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020
Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102
Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190
Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039
Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloid Interface Sci. Commun. 2020. 35: 100251. https://doi.org/10.1016/j.colcom.2020.100251
Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409
Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. J. Colloid Interface Sci. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065
Sementsov Yu.I., Prikhod'ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. In: Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010. P. 347. https://doi.org/10.1007/978-90-481-2309-4_27
Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids Surf., A. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084
Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. Int. J. Nanotechnol. 2019. 16(1-3): 100. https://doi.org/10.1504/IJNT.2019.102396
Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chem. Phys. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007
Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8
Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Appl. Nanosci. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6
Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Appl. Surf. Sci. Adv. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057
Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Appl. Nanosci. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w
Stavitskaya S.S., Mironyuk T.I., Kartel N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russ. J. Appl. Chem. 2001. 74(4): 592.https://doi.org/10.1023/A:1012706531317
Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110
Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chem. J. Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401
Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids Surf., A. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056
Galysh V., Sevastyanova O., Kartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J. Therm. Anal. Calorim. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Ivashchenko L.A., Rusakov G.V. Atomic and electronic structures of a-SiC:H from tight-binding molecular dynamics. J. Phys.: Condens. Matter. 2003. 15(24). 4119. https://doi.org/10.1088/0953-8984/15/24/305
Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044
Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. In: NATO Security through Science Series A: Chemistry and Biology. 2007. P. 365. https://doi.org/10.1007/978-1-4020-5514-0_47
Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064
Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087
Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. Int. J. Hydrogen Energy. 2022. 47(11): 727 https://doi.org/10.1016/j.ijhydene.2021.02.081
Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. In: NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7
Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011
Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7
Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874
Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable Energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0
Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D
Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energy. 994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5
Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069
Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5
Rud A.D., Schmidt U., Zelinska, G.M., Lakhnik, A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. J. Non-Cryst. Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095
Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X
Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Compd. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9
Lytvynenko Yu.M., Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9
Matysina Z.A., Zaginaichenko, S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russ. Phys. J. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0
Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. J. Alloys Compd. 2005. 404-406: 515. https://doi.org/10.1016/j.jallcom.2004.12.174
Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088
Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089
Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Met. Metall. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079
Tikhotskii S.A, Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062
Kulnitsky B.A. Doctoral (Physical and Mathematical Sciences). Thesis. (Moscow, 2010). [in Russian].
Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. Noveishie Tekhnol. 2022. 44(3): 343.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu.O., Zagorulko I.V., Zolotarenko A. D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417.
Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukr. J. Phys. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020
Ivashchenko V.I., Shevchenko V.I. Effects of short-range disorder upon electronic properties of a-SiC alloys. Appl. Surf. Sci. 2001. 184(1-4): 137. https://doi.org/10.1016/S0169-4332(01)00671-7
Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 2020. 23(3): 308.
Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metall. Met. Ceram. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628
Ilyin A.P., Mostovshchikov A.V., Root L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure. Condens. Matter Phys. 2013. 16(3): 33602. https://doi.org/10.5488/CMP.16.33602
Onoprienko A.A., Ivashchenko V.I., Dub S.N., Khyzhun O.Y., Timofeeva I.I. Microstructure and mechanical properties of hard Ti-Si-C-N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target. Surf. Coat. Technol. 2011. 205(21-22): 5068. https://doi.org/10.1016/j.surfcoat.2011.05.009
Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50% Cr composite. Powder Metall. Met. Ceram. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9
Kozak A.O., Ivashchenko V.I., Porada O.K., Ivashchenko L.A., Tomila T.V., Manjara V.S., Klishevych G.V. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: An effect of substrate bias. Mater. Sci. Semicond. Process. 2018. 88: 65. https://doi.org/10.1016/j.mssp.2018.07.023
Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Olifan E.I. First-principles study of phase stability of stoichiometric vanadium nitrides. Phys. Rev. B. 2011. 84(17): 174108. https://doi.org/10.1103/PhysRevB.84.174108
Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metall. Met. Ceram. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0
Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Mater. Sci. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y
Ivashchenko V.I., Vepřek S. First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparison with experiments. Thin Solid Films. 2013. 545: 391. https://doi.org/10.1016/j.tsf.2013.08.047
Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034
Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029
Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Eng. Mater. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146
Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metall. Met. Ceram. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z
Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metall. Met. Ceram. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x
Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metall. Met. Ceram. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0
Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. 1-2: 44.
Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metall. Met. Ceram. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z
Ivashchenko V.I., Veprek S., Turchi P.E.A., Shevchenko V.I., Leszczynski J., Gorb L., Hill F. First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films. 2014. 564: 284. https://doi.org/10.1016/j.tsf.2014.05.036
Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metall. Met. Ceram. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1
DeBour J. Dynamic nature of adsorption. (Moscow: Publishing house of foreign. lit., 1988).
Khomenko A.Yu., Tkachenko S.I. Determination of the specific surface of porous materials by the BET and Araganovich methods. (Moscow: Publishing House of the Moscow Engineering and Technical Institute, 2014).
Hildebrandt M., Vershinina E.P., Marchenko N.V. Metallurgy of non-ferrous metals. (Moscow: Publishing house of literature on metallurgy, 2009).
Antsiferov V.N., Bezrudny F.F., Balanchikov L.N. New materials. (Moscow: Metallurgy Publishing House, 2002).
Gusev R.I., Rempel A.A. Nanocrystalline materials. (Moscow: Metallurgy Publishing House, 2001).
Andrievsky R.A., Ragulya A.V. Nanostructured materials. (Moscow: RDF, 2005).
Danyushina G.A., Shishka V.G., Berezhnoy Yu.M. Preparation of copper nanopowders modified with water-soluble polymers. Part 2. ( Novocherkassk: "Engineering Bulletin of the Don", 2015).
Zotov E.S. Ph.D. (Tech. Sci.) Thesis. (Moscow, 2008). [in Russian].
Gusev A.I. Nanomaterials, nanostructures, nanotechnologies. (Moscow: Physics and Mathematics. ed., 2005).
Patent C22B15; 2426805. Eremenko N.K. Method for obtaining nanodispersed copper powder. 2004.
Semenyuk Yu.S., Obraztsova I.I., Eremenko N.K. Methods for obtaining nano-dispersed powders. (Moscow: Nauka Publishing House, 2005).
DOI: https://doi.org/10.15407/hftp14.03.393
Copyright (©) 2023
This work is licensed under a Creative Commons Attribution 4.0 International License.