Influence of the Nernst diffusion layer thickness on surface concentration in a model electrochemical process with a preceding chemical reaction
DOI: https://doi.org/10.15407/hftp14.04.453
Abstract
The influence of the Nernst diffusion layer thickness on the surface concentrations of electroactive and electroinactive species in a model electrochemical process with a preceding homogeneous first-order chemical reaction under application of a small amplitude alternating current has been investigated. A case of equal diffusion coefficients of species taking part in the preceding chemical reaction in a thin layer attached to a planar electrode is considered. It has been shown that, at low frequencies of an applied alternating current, the surface concentrations of electroactive and electroinactive species increase with increasing the Nernst diffusion layer thickness. At high frequencies, the surface concentrations of both species do not depend on this parameter. However, there is a range of frequencies where the surface concentrations of species can decrease with increasing the Nernst diffusion layer thickness. This range of frequencies can be influenced by a value of the Nernst diffusion layer thickness, the rate constants of chemical reaction, and the diffusion coefficient of species. There exists a phase shift between an alternating current and the surface concentrations of electroactive and electroinactive species that change under application of this current. It is a function of the Nernst diffusion layer thickness, the oscillation diffusion layer thickness, and the reaction layer thickness. In the case of electroactive species, the phase angle can take only a positive value. At low frequencies, it tends to π/2, whereas at high frequencies it decreases to π/4. For the case of electroinactive species, the phase angle can be positive, negative, and equal to zero depending on the value of the Nernst diffusion layer thickness, the rate constants of chemical reaction, and the diffusion coefficient of species. It approaches –π/2 at low frequencies, and at high frequencies it tends to π/4. The both phase angles can have the maxima and the minima. Their values are strongly dependent on the Nernst diffusion layer thickness, the diffusion coefficient of species, the rate constants of chemical reaction.
Keywords
References
1. Laborda E., Gómez-Gil J.M., Molina A., Compton R.G. Spectroscopy takes electrochemistry beyond the interface: a compact analytical solution for the reversible first-order catalytic mechanism. Electrochim. Acta. 2018. 284: 721. https://doi.org/10.1016/j.electacta.2018.07.070
2. Molina A., González J., Laborda E., Compton R.G. Analytical theoretical approach to the transient and steady state voltammetric response of reaction mechanisms. Linear diffusion and reaction layers at micro- and submicroelectrodes of arbitrary geometry. J. Electroanal. Chem. 2016. 782: 59. https://doi.org/10.1016/j.jelechem.2016.09.047
3. Molina A., González J., Laborda E., Compton R.G. Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes. Phys. Chem. Chem. Phys. 2013. 15(19): 7106. https://doi.org/10.1039/c3cp50290b
4. Molina A., González J., Laborda E., Compton R.G. On the meaning of the diffusion layer thickness for slow electrode reactions. Phys. Chem. Chem. Phys. 2013. 15(7): 2381. https://doi.org/10.1039/c2cp43650g
5. Zhu P., Zhao Y. Cyclic voltammetry measurements of electroactive surface area of porous nickel: Peak current and peak charge methods and diffusion layer effect. Mater. Chem. Phys. 2019. 233: 60. https://doi.org/10.1016/j.matchemphys.2019.05.034
6. Uzdenova A., Kovalenko A., Urtenov M., Nikonenko V. 1D Mathematical modelling of non-stationary ion transfer in the diffusion layer adjacent to an ion-exchange membrane in galvanostatic mode. Membranes. 2018. 8(3): 84. https://doi.org/10.3390/membranes8030084
7. Le T.D., Lasseux D., Nguyen X.P., Vignoles G., Mano N., Kuhn A. Multi-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes. Chem. Eng. Sci. 2017. 173: 153. https://doi.org/10.1016/j.ces.2017.07.039
8. Vorotyntsev M.A., Antipov A. Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br− redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants. J. Electroanal. Chem. 2016. 779(10): 146. https://doi.org/10.1016/j.jelechem.2016.06.004
9. Vorotyntsev M.A., Volgin V.M., Davydov A.D. Halate electroreduction from acidic solution at rotating disk electrode: Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons. Electrochim. Acta. 2022. 409: 139961. https://doi.org/10.1016/j.electacta.2022.139961
10. Zhang Y., Hu A., Maxey E., Li L., Lin F. Spatiotemporal visualization and chemical identification of the metal diffusion layer at the electrochemical interface. J. Electrochem.Soc. 2022. 169(10): 100512. https://doi.org/10.1149/1945-7111/ac964b
11. Gichan O.I. Influence of diffusion layer thickness on dynamical instabilities appearance in a model electrocatalytic process. Dopovidi NASU. 2012. 1: 137.
12. Velasco J.G. On the dependence of the Nernst diffusion layer thickness on potential and sweep rate for reversible and of the thickness of the charge transfer layer for irreversible processes studied by application of the linear potential sweep method. Electrochim. Acta. 2006. 51(14): 2971. https://doi.org/10.1016/j.electacta.2005.08.028
13. Diard J.-P., Gorrec B. L., Montella C. Diffusion layer approximation under transient conditions. J. Electroanal. Chem. 2005. 584(2): 182. https://doi.org/10.1016/j.jelechem.2005.05.018
14. Prasad M.A., Sangaranarayanan M.V. Analysis of the diffusion layer thickness, equivalent circuit and conductance behaviour for reversible electron transfer processes in linear sweep voltammetry. Electrochim. Acta. 2004. 49(3): 445. https://doi.org/10.1016/j.electacta.2003.05.003
15. Amatore C., Szunerits, Thouin L., Warkocz J.-S. The real meaning of Nernst's steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich's seminal view of convection. J. Electroanal. Chem. 2001. 500(1-2): 62. https://doi.org/10.1016/S0022-0728(00)00378-8
16. Gichan O.I. Analytical expressions for surface concentration distribution in a model electrochemical process with a preceding chemical reaction. Him. Fiz. Technol. Poverhni. 2022. 13(3): 239. https://doi.org/10.15407/hftp13.03.239
17. Pototskaya V.V., Gichan O.I. The Gerischer finite length impedance: a case of unequal diffusion coefficients. J. Electroanal. Chem. 2019. 852: 113511. https://doi.org/10.1016/j.jelechem.2019.113511
18. Pototskaya V.V., Gichan O.I. On the origin of phase angle in Warburg finite length diffusion impedance. Int. J. Electrochem. Sci. 2019. 14: 8195. https://doi.org/10.20964/2019.08.97
19. Koutecky J.A., Levich V.G. Application of rotating disc electrode to study kinetic and katalytic processes in electrochemistry. Doklady Akademii Nauk. 1957. 117: 441.
20. Gerischer H. Wechselstrompolarisation von Elektroden mit einem potentialbestimmenden Schritt beim Gleichgewichtspotential I. Z. Phys. Chem. 1951. 198: 286. https://doi.org/10.1515/zpch-1951-19824
21. Wolfram S. MathematicaTM. (Redwood City: Addison Wesley, 1988).
DOI: https://doi.org/10.15407/hftp14.04.453
Copyright (©) 2023 O. I. Gichan
This work is licensed under a Creative Commons Attribution 4.0 International License.