Quantum chemical simulation of acid-base properties of the surface of SnO2 nanoparticles
DOI: https://doi.org/10.15407/hftp14.04.495
Abstract
Molecular models for tin dioxide nanoparticles containing 1-7 metal atoms and coordinated or constitutive water have been constructed. Dependent on the composition of the models, the coordination number of the tin atom varied from 4 to 6, and that of oxygen was 2 or 3. The considered models contained both terminal (Sn–OH) and bridging (Sn–OH–Sn) hydroxyl groups, and also bridging (Sn–O–Sn) groups. Their equilibrium spatial and electronic structures were calculated using the second-order Møller-Plesset perturbation theory method with the SBKJC valence-only basis set. To assess the gas-phase acidity of the dioxide surface, the deprotonation energy of the studied models was determined. The adsorption energy of water molecules and hydroxide ions on aprotic (incompletely coordinated) tin atoms, which act as Lewis acid centers, was calculated. In order to estimate the pKa value of the surface of tin dioxide, the Gibbs free energy was calculated for the process of formation of ion pairs due to the proton transfer from hydroxyl groups to adsorbed water molecules. Based on the analysis of the energy effects of the coordination of water molecules and of hydroxide ion, the removal of a proton and its transfer on the hydrated surface of tin dioxide, quantitative estimates have been made of the acid-base characteristics of the active sites of the SnO2 surface. The dependence of the acidity of hydroxyl groups and coordinated water molecules on the coordination number of the oxygen atom and the neighboring tin atom, as well as on the dimensions of the cluster model, was revealed. It is shown that the acidity of protonic and aprotic sites naturally decreases with an increase in the coordination number of the tin atom. The method of calculating the value of pKa used in the work for the smallest model of the SnO2×2H2O composition allows one to reproduce the experimental data for stannic acids.
Keywords
References
1. Lee S.-Y., Park K.-Y., Kim W.-S., Yoon S., Hong S.-H., Kang K., Kim M. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy. 2016. 19: 234. https://doi.org/10.1016/j.nanoen.2015.10.026
2. Odani A., Nimberger A., Markovsky B., Sominski E., Levi E., Kumar V.G. Development and testing of nanomaterials for rechargeable lithium batteries. J. Power Sources. 2003. 119-121: 517. https://doi.org/10.1016/S0378-7753(03)00276-3
3. Xu X., Zhang R., Zeng X., Han X., Li Y., Liu Y., Wang X. Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation. Chem. Cat. Chem. 2013. 5(7): 2025. https://doi.org/10.1002/cctc.201200760
4. Liberkova K., Touroude R. Performance of Pt/SnO2 catalyst in the gas phase hydrogenation of crotonaldehyde. J. Mol. Catal. A Chem. 2002. 180(1-2): 221. https://doi.org/10.1016/S1381-1169(01)00439-3
5. Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar S.B., Ravishankar R. Mesoporous tin oxide: an efficient catalyst with versatile applications in acid and oxidation catalysis. Catal. Today. 2018. 309: 61. https://doi.org/10.1016/j.cattod.2017.10.009
6. Ray S., Dutta J., Barua A.K. Bilayer SnO2: In/SnO2 thin films as transparent electrodes of amorphous silicon solar cells. Thin Solid Films. 1991. 199(2): 201. https://doi.org/10.1016/0040-6090(91)90001-E
7. Tran V.-H., Ambade R.B., Ambade S.B., Lee S.-H., Lee I.-H. Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces. 2017. 9(2): 1645. https://doi.org/10.1021/acsami.6b10857
8. Valitova I., Natile M.M., Soavi F., Santato C., Cicoira F. Tin dioxide electrolyte-gated transistors working in depletion and enhancement modes. ACS Appl. Mater. Interfaces. 2017. 9(42): 37013. https://doi.org/10.1021/acsami.7b09912
9. Granqvist C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells. 2007. 91(17): 1529. https://doi.org/10.1016/j.solmat.2007.04.031
10. Tin Oxide Materials. Synthesis, Properties, and Applications. (Elsevier Inc. 2020).
11. Sauer J. Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts. Chem. Rev. 1989. 89(1): 199. https://doi.org/10.1021/cr00091a006
12. Oviedo J., Gillan M.J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 2000. 463(2): 93. https://doi.org/10.1016/S0039-6028(00)00612-9
13. Hong S.-N., Kye Y.-H., Yu C.-J., Jong U.-G., Ri G.-C., Choe C.-S., Han J.-M. Ab initio thermodynamic study of the SnO2 (110) surface in an O2 and NO environment: a fundamental understanding of the gas sensing mechanism for NO and NO2. Phys. Chem. Chem. Phys. 2016. 18(46): 31566. https://doi.org/10.1039/C6CP05433A
14. Agamalyan M.A., Hunanyan A.A., Harutyunyan V.M., Aleksanyan M.S., Sayunts A.G., Zakaryan A.A. Studies of the interaction of H2O2 with the SnO2 (110) surface from first principles. Izvestia of the National Academy of Sciences of Armenia, Phys. 2020. 55(3): 358. [in Russian]. https://doi.org/10.3103/S1068337220030020
15. Korotcenkov G., Golovanov V., Brinzari V., Cornet A., Morante J., Ivanov M. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications. J. Phys. 2005. 15: 256. https://doi.org/10.1088/1742-6596/15/1/043
16. Kılıç C., Zunger A. Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Let. 2002. 88(9): 95. https://doi.org/10.1103/PhysRevLett.88.095501
17. Sensato F.R., Filho O.T., Longo E., Sambrano J.R., Andres J. Theoretical analysis of the energy levels indused by oxygen vacancies and the doping process (Co, Cu and Zn) on SnO2 (110) surface models. J. Mol. Struct. 2001. 541(1-3): 69. https://doi.org/10.1016/S0166-1280(00)00731-4
18. Abdulsattar M.A., Abed H.H., Jabbar R.H., Almaroof N.M. Effect of formaldehyde properties on SnO2 clusters gas sensitivity: A DFT study. J. Mol. Graph. Model. 2021. 102: 107791. https://doi.org/10.1016/j.jmgm.2020.107791
19. Zhao Z., Li Z. First-principle calculations on the structures and electronic properties of the CO-adsorbed (SnO2)2 clusters. Struc. Chem. 2020. 31(5): 1861. https://doi.org/10.1007/s11224-020-01554-4
20. Ducere J.-M., Hemeryck A., Esteve A., Rouhani M.D., Landa G., Menini P., Tropis C., Maisonnat A., Fau P., Chaudret B. A Computational chemist approach to gas sensors: modeling the response of SnO2 to CO, O2, and H2O gases. J. Comput. Chem. 2011. 33(3): 247. https://doi.org/10.1002/jcc.21959
21. Tingting S., Fuchun Z., Weihu Z. Density functional theory study on the electronic structure and optical properties of SnO2. Rare Metal Materials and Engineering. 2015. 44(10): 2409. https://doi.org/10.1016/S1875-5372(16)30031-5
22. Tanabe K. Solid Acids and Bases: Their Catalytic Properties. (Tokyo: Kodansha Ltd., 1970.) https://doi.org/10.1016/B978-0-12-683250-1.50005-5
23. Marikutsa A.V., Rumyantseva M.N., Konstantinova E.A., Shatalova T.B., Gaskov A.M. Active sites on nanocrystalline tin dioxide surface: effect of palladium and ruthenium oxides clusters. J. Phys. Chem. C. 2014. 118(37): 21541. https://doi.org/10.1021/jp5071902
24. Baldasare C.A., Seybold H.G. Computational Estimation of the Aqueous Acidities of Alcohols, Hydrates, and Enols. J. Phys. Chem. A. 2021. 125(17): 3600. https://doi.org/10.1021/acs.jpca.1c01330
25. Tingting S., Fuchun Z., Weihu Z. Density functional theory study on the electronic structure and optical properties of SnO2. Rare Metal Materials and Engineering. 2015. 44(10): 2409. https://doi.org/10.1016/S1875-5372(16)30031-5
26. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
27. Sain S., Kar A., Patra A., Pradhan S.K. Structural interpretation of SnO2 nanocrystals of different morphologies synthesized by microwave irradiation and hydrothermal methods. Cryst. Eng. Comm. 2014. 16(6): 1079. https://doi.org/10.1039/C3CE42281J
28. Pavelko R.G., Daly H., Hardacre C., Vasilieva A.A., Llobeta E. Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms. Phys. Chem. Chem. Phys. 2010. 12: 2639. https://doi.org/10.1039/b921665k
29. Abee M.W., Cox D.F. NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces. Surf. Sci. 2002. 520(1-2): 65. https://doi.org/10.1016/S0039-6028(02)02247-1
30. Petro N.S., El-Naggar I.M., Shabana E.-S.I., Misak N.Z. On the behaviour of hydrous tin oxide as an ion exchanger: structural features, porous texture, capacity and apparent pK values. Colloids Surf. 1990. 49: 219. https://doi.org/10.1016/0166-6622(90)80104-C
31. Demianenko E., Ilchenko M., Grebenyuk A., Lobanov V. A theoretical study on orthosilicic acid dissociation in water clusters. Chem. Phys. Lett. 2011. 515(4-6): 274. https://doi.org/10.1016/j.cplett.2011.09.038
32. Kravchenko A.A., Demianenko E.M., Filonenko O.V., Grebenyuk A.G., Lobanov V.V., Terets M.I. A quantum chemical analysis of dependence of the protolytic properties of silica nanoparticles on the composition and spatial structures of their molecules. Surface. 2017. 9(24): 28. https://doi.org/10.15407/Surface.2017.09.028
33. Grebenyuk A.G. Coexistence of ion pairs and molecular associates in the nanoparticles of inorganic compounds. Surface. 2019. 11(26): 344. [in Ukrainian]. https://doi.org/10.15407/Surface.2019.11.344
DOI: https://doi.org/10.15407/hftp14.04.495
Copyright (©) 2023 O. V. Filonenko, A. G. Grebenyuk, M. I. Terebinska, V. V. LobanovO. V. Filonenko, A. G. Grebenyuk, M. I. Terebinska, V. V. Lobanov
This work is licensed under a Creative Commons Attribution 4.0 International License.