Chemistry, Physics and Technology of Surface, 2023, 14 (4), 519-533.

Acid and thermal treatment of natural heulandite



DOI: https://doi.org/10.15407/hftp14.04.519

V. G. Tsitsishvili, N. M. Dolaberidze, M. O. Nijaradze, N. A. Mirdzveli, Z. S. Amiridze, B. T. Khutsishvili

Abstract


Acid treatment of natural zeolites is considered to be an effective method of “improving” their structure and properties, among which thermal stability occupies a special place, especially for catalytic applications of zeolites. The influence of hydrochloric acid solutions with concentrations up to 2 mol/L and calcination at temperatures up to 1100 °C on the structure and properties of heulandite-containing tuff from the Georgian Dzegvi-Tedzami deposit, selected for the creation of new bactericidal zeolite filter materials for purification and desinfection of water from various sources, was studied by the X-ray energy dispersion spectra, diffraction patterns and thermal analysis, as well as by adsorption of water, benzene and nitrogen methods. It has been found that an acidic environment leads to significant dealumination (Si/Al molar ratio increases from 3.6 to 9.5) and decationization (total charge of metal ions per Al atom decreases from 1 to 0.68) of the sample; solutions of hydrochloric acid do not lead to amorphization of the zeolite microporous crystal structure, but gradually dissolve it. As a result of acid treatment, there is also a sharp increase in the volume of micropores available for large molecules (from ≈ 7 to 80–90 mm3/g) and surface area (from ≈ 13 to  120–175 m2/g), as well as changes in the mesoporous system, leading to the prevalence of pores with a diameter of up to 4 nm. Heulandite heating leads to stepwise dehydration proceeding up to ≈ 800 °C, amorphization starting at ≈ 250 °C, and structural changes: the transition to methastable heulandite B phase at ≈ 340 °C is not fixed, but at ≈ 500 °C wairakite (Ca(Al2Si4O12)·2H2O) is formed, at temperatures above ≈ 1000 °C, amorphous aluminosilicate contains crystalline inclusions of cristobalite (polymorph of SiO2), α-quartz, albite (Na(AlSi3O8), hematite (Fe2O3) and magnetite (FeO·Fe2O3); heating-induced changes in micro- and mesopore systems are insignificant. It is also shown that heat treatment increases the acid resistance of heulandite, which is expressed in a decrease in the degree of dealumination after acid treatment of calcined samples. Thus, acid and heat treatment of heulandite make it possible to obtain materials with different sorption and ion-exchange properties.


Keywords


heulandite; dealumination; decationization; dehydration; amorphization

Full Text:

PDF

References


1. Vasconcelos A.A., Len T., de Oliveira A.dN., da Costa A.A.F., da Silva Souza A.R., da Costa C.E.F., Luque R., da Rocha Filho G.N., Noronha R.C.R., do Nascimento L.A.S. Zeolites: a theoretical and practical approach with uses in (bio)chemical processes. Appl. Sci. 2023. 13(3): 1897. https://doi.org/10.3390/app13031897

2. de Magalhães L.F., da Silva G.R., Peres A.E.C. Zeolite application in wastewater treatment. Ads. Sci. Technol. 2022. 2022: 4544104. https://doi.org/10.1155/2022/4544104

3. Andrunik M., Bajda T. Removal of pesticides from waters by adsorption: comparison between synthetic zeolites and mesoporous silica materials. A review. Materials. 2021. 14(13): 3532. https://doi.org/10.3390/ma14133532

4. Grela A., Kuc J., Bajda T. A review of the application of zeolites and mesoporous silica materials in the removal of non-steroidal anti-flammatory drugs and antibiotics from water. Materials. 2021. 14(17): 4994. https://doi.org/10.3390/ma14174994

5. Wang S., Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010. 156(1): 1. https://doi.org/10.1016/j.cej.2009.10.029

6. Çakicioğlu-Özkan F., Becer M. Effect of the acid type on the natural zeolite structure. J. Turk. Chem. Soc. Sect. A Chem. 2019. 2(2): 69.

7. Rozić M., Cerjan-Stefanović S., Kurajica S., Maeefat M.R., Margeta K., Farkas A. Decationization and dealumination of clinoptilolite tuff and ammonium exchange on acid-modified tuff. J. Colloid Interface Sci. 2005. 284(1): 48. https://doi.org/10.1016/j.jcis.2004.09.061

8. Cakicioglu-Ozkan F., Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater. 2005. 77(1): 47. https://doi.org/10.1016/j.micromeso.2004.08.013

9. Tsitsishvili V., Panayotova M., Miyamoto M., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z., Klarjeishvili N., Khutsishvili B., Dzhakipbekova N., Harutyunyan L. Characterization of Georgian, Kazakh and Armenian natural heulandite-clinoptilolites. Bulletin of The Georgian National Academy of Sciences. 2022. 16(4): 115.

10. Tsitsishvili V., Machaladze T., Dolaberidze N., Nijaradze M., Mirdzveli N., Djakipbekova N., Harutyunyan L. Dehydration and structural transformations during thermal treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites. Scientific collection InterConf. 2022. 136: 356. https://doi.org/10.51582/interconf.19-20.01.2023.025

11. Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Dzhakipbekova N., Harutyunyan L., Amiridze Z,, Khutsishvili B. Acid treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites. Scientific collection InterConf. 2022. 138: 363. https://doi.org/10.51582/interconf.19-20.01.2023.025

12. Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Dzhakipbekova N., Harutyunyan L., Amiridze Z., Khutsishvili B. Acid treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites. II. Adsorption and porous structure. Scientific collection InterConf+. 2023. 31(147): 483. https://doi.org/10.51582/interconf.19-20.03.2023.052

13. Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Dzhakipbekova N., Harutyunyan L., Amiridze Z., Khutsishvili B. Thermal treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites. Scientific collection InterConf+. 2023. 29(139): 242. https://doi.org/10.51582/interconf.19-20.01.2023.025

14. Tsitsishvili V., Panayotova M., Mirdzveli N., Dzhakipbekova N., Panayotov V., Dolaberidze N., Nijaradze M. Acid resistance and ion-exchange capacity of natural mixtures of heulandite and chabazite. Minerals. 2023. 13(3): 364. https://doi.org/10.3390/min13030364

15. Mumpton F.A. Clinoptilolite redefined. Am. Mineral. 1960. 45: 351.

16. Koizumi M. The differential thermal analysis curves and the dehydration curves of zeolites. Mineralogical J. 1953. 1(1): 36. https://doi.org/10.2465/minerj1953.1.36

17. Pechar F., Rykl D. Study of the thermal stability of the natural zeolite heulandite. Chem. Pap. 1985. 39(3): 369.

18. Dang L., Le S., Lobo R., Pham T. Hydrothermal synthesis of alkali-free chabazite zeolites. J. Porous Mater. 2020. 27: 1481. https://doi.org/10.1007/s10934-020-00923-y

19. Lide D.R. CRC Handbook of Chemistry and Physics. 81st Edition. (Boca Raton FL: CRC Press LLC, 2000).

20. Olson D.H., Haag W.O., Borghard W.S. Use of water as a probe of zeolitic properties: interaction of water with HZSM-5. Microporous Mesoporous Mater. 2000. 35/36: 435. https://doi.org/10.1016/S1387-1811(99)00240-1

21. Brunauer S., Deming L., Deming W., Teller E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940. 62(7): 1723. https://doi.org/10.1021/ja01864a025

22. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquérol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985. 57(4): 603.

23. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938. 60(2): 309. https://doi.org/10.1021/ja01269a023

24. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(1): 373. https://doi.org/10.1021/ja01145a126

25. Halsey G.D. Physical adsorption on non‐uniform surfaces. J. Chem. Phys. 1948. 16: 931. https://doi.org/10.1063/1.1746689

26. Faass G.S. Correlation of gas adsorption, mercury intrusion, and electron microscopy pore property data for porous glasses. Thesis, Chemical Engineering. (Georgia Institute of Technology, US, 1981). http://hdl.handle.net/1853/32965

27. Akimkhan A.M. Structural and Ion-Exchange Properties of Natural Zeolite. In: Ion Exchange Technologies. (London: IntechOpen, 2012).

28. Silva M., Lecus A., Lin Y.T., Corrao J. Tailoring natural zeolites by acid treatments. J. Mater. Sci. Chem. Eng. 2019. 7(2): 26. https://doi.org/10.4236/msce.2019.72003




DOI: https://doi.org/10.15407/hftp14.04.519

Copyright (©) 2023 V. G. Tsitsishvili, N. M. Dolaberidze, M. O. Nijaradze, N. A. Mirdzveli, Z. S. Amiridze, B. T. Khutsishvili

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.