Theoretical study on the interaction of polychlorotrifluoroethylene fragments with graphene-like planes
DOI: https://doi.org/10.15407/hftp14.04.534
Abstract
The interaction of graphene with fragments of polychlorotrifluoroethylene (PCTFE) has been studied by quantum chemistry methods. Within the frameworks of the density functional theory with B3LYP exchange-correlation functional, 6-31G(d,p) basis set and the Grimme dispersion correction, and the second order Møller-Plesset perturbation theory (MP2), the values of the interaction energy of graphene with polychlorotrifluoroethylene oligomers were calculated and the most probable structures of their intermolecular complexes were optimized. As a graphene model, graphene-like planes (GLP) of different sizes were chosen, namely: С40Н16, С54Н18 and С96Н24.
Oligomers of polychlorotrifluoroethylene and graphene-like planes in the formed nanocomposites are located closer to each other than individual polymer links.
When comparing the results of calculations by the B3LYP-D3/6-31G(d,p) and MP2/6-31G(d,p) methods, both in the case of interactions of polychlorotrifluoroethylene oligomers with each other and intermolecular complexes of polychlorotrifluoroethylene oligomers and graphene-like planes, it has been found that the second order Møller-Plesset method is characterized by a larger intermolecular distance and a lower energy of intermolecular interactions compared to the method of the density functional theory with the Grimme dispersion correction, which is explained by the fact that the MP2 method does not fully take into account the relatively small components of dispersion interactions.
Analysis of the calculation results using quantum chemistry methods shows that the addition of graphene-like planes to the polychlorotrifluoroethylene polymer leads to an increase in the intermolecular interaction energy, regardless of the calculation method used and the sizes of polychlorotrifluoroethylene oligomers and graphene-like planes. This may indicate greater strength and thermal stability of the nanocomposite based on graphene-like planes with polychlorotrifluoroethylene oligomers.
The zero value of the Gibbs free energy ΔGreact for the interaction of two dimers with each other is characteristic at 270 K, and the similar value of the interaction of the PCTFE dimer with GLP is at a much higher temperature (420 K). This fact reflects the growth in thermostability of nanocomposites as compared to the polymer itself.
Keywords
References
1. Sun X., Huang C., Wang L., Liang L., Cheng Y., Fei W., Li Y. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2020. 33(6): 2001105. https://doi.org/10.1002/adma.202001105
2. Sheeparamatti B.G., Sheeparamatti R.B. Nanotechnology: Inspiration from Nature. IETE Technical Review. 2007. 24(1): 5.
3. Ahmad S.I., Hamoudi H., Abdala A., Ghouri Z.K., Youssef K.M. Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties. Rev. Adv. Mater. Sci. 2020. 59: 67. https://doi.org/10.1515/rams-2020-0007
4. Wang J., Zhou J., Hu Y., Regier T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013. 6(3): 926. https://doi.org/10.1039/c2ee23844f
5. Jia Z., Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. J. Mater. Chem. A. 2015. 3(8): 4405. https://doi.org/10.1039/C4TA06193D
6. Xing W., Li H., Huang G., Cai L., Wu J. Graphene oxide induced crosslinking and reinforcement of elastomers. Compos. Sci. Technol. 2017. 144: 223. https://doi.org/10.1016/j.compscitech.2017.03.006
7. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater. Res. 2009. 12(1): 1. https://doi.org/10.1590/S1516-14392009000100002
8. Zeranska-Chudek K., Lapinska A., Wroblewska A., Judek J., Duzynska A., Pawlowski M., Witowski A.M., Zdrojek M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018. 8(1): 9132. https://doi.org/10.1038/s41598-018-27317-0
9. Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007. 6: 183. https://doi.org/10.1038/nmat1849
10. Sahu D., Sutar H., Senapati P., Murmu R., Roy D. Graphene, graphene-derivatives and composites: fundamentals, synthesis approaches to applications. J. Compos. Sci. 2021. 5(7): 181. https://doi.org/10.3390/jcs5070181
11. Li Z., Fu X., Guo Q., Zhao L., Fan G., Li Z., Xiong D.B., Su Y., Zhang D. Graphene quality dominated interface deformation behavior of graphene-metal composite: The defective is better. Int. J. Plast. 2018. 111: 253. https://doi.org/10.1016/j.ijplas.2018.07.020
12. Hu Z., Tong G., Lin D., Chen C., Guo H., Xu J., Zhou L. Graphene-reinforced metal matrix nanocomposites - a review. Mater. Sci. Technol. 2016. 32(9): 930. https://doi.org/10.1080/02670836.2015.1104018
13. Muxi L., Yuhong Z., Liwen C., Jianquan L., Ting Z., Hua H. Research progress on preparation technology of graphene-reinforced aluminum matrix composites. Mater. Res. Express. 2019. 6(3): 032002. https://doi.org/10.1088/2053-1591/aaf4a5
14. Lau K.T. Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 2003. 370(3-4): 399.
https://doi.org/10.1016/S0009-2614(03)00100-3
15. Makhno S., Gunya G., Sementsov Y., Grebelna Y., Kartel M., Lisova O. The properties of synthesized graphene and polychlorotrifluoroethylene - graphene systems. Physics and Chemistry of Solid State. 2016. 17(3): 421. https://doi.org/10.15330/pcss.17.3.421-425
16. Yi L., Guiqi F., Tianyu W., Haimu Y. Effect of graphite microsheets on crystallization and properties of polychlorotrifluoroethylene[J]. China Plastics. 2023. 37(1): 18.
17. Liang C.Y., Krimm S. Infrared Spectra of High Polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene. J. Chem. Phys. 1956. 25: 563. https://doi.org/10.1063/1.1742964
18. Li Y., Wen J., Wu T., Cao Ch., Meng X., Ye H. Mechanical properties and microstructure of polychlorotrifluoroethylene toughened by polyamide 11 based on intermolecular interaction. J. Appl. Polym. Sci. 2022. 39(42): e53028. https://doi.org/10.1002/app.53028
19. Price F.P. The development of crystallinity in polychlorotrifluoroethylene. J. Am. Chem. Soc. 1952. 74(2): 311. https://doi.org/10.1021/ja01122a006
20. Watkins J.J., Mecarthy T.J. Polymerization of styrene in supercritical CO2-Swollen Poly(chlorotrifluoroethylene). Macromolecules. 1995. 28: 4067. https://doi.org/10.1021/ma00116a004
21. Dias A.J., McCarthy T.J. Surface modification of poly(chlorotrifluoroethylene) with methyllithium. Macromolecules. 1985, V. 18(10): 1826. https://doi.org/10.1021/ma00152a006
22. Miyamoto Y. Crystallization of Poly(chlorotrifluoroethylene). Polym. J. 1972. 3(2): 122. https://doi.org/10.1295/polymj.3.122
23. Cheng G., Chen B., Guo F., Xiang C., Jia X. Research on the friction and wear mechanism of a polymer interface at low temperature based on molecular dynamics simulation. Tribol. Int. 2023. 183: 108396. https://doi.org/10.1016/j.triboint.2023.108396
24. Zou J., Zhang M., Huang M., Zhao D., Dai Y. Structure, properties, and modification of polytrifluorochloroethylene: a review. Front. Mater. 2022. 9: 824155. https://doi.org/10.3389/fmats.2022.824155
25. Scott A.H., Scheiber D.J., Curtis A.J., Lauritzen Jr. J.I., Hoffman J.D. Dielectric properties of semicrystalline polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand. A. Phys. Chem. 1962. 66A(4): 269. https://doi.org/10.6028/jres.066A.028
26. Ahangari M.G., Fereidoon A., Ganji M.D. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties. J. Mol. Model. 2013. 19: 3127. https://doi.org/10.1007/s00894-013-1852-6
27. Zhang Q., Zhao X., Sui G., Yang X. Surface sizing treated MWCNTs and its effect on the wettability, interfacial interaction and flexural properties of MWCNT/Epoxy nanocomposites. Nanomaterials. 2018. 8(9): 680. https://doi.org/10.3390/nano8090680
28. Terets M.I., Demianenko E.M., Zhuravsky S.V., Chernyuk O.A., Kuts V.S., Grebenyuk A.G., Sementsov Yu.I., Kokhtych L.M., Kartel M.T. Quantum chemical study on the interaction of carbon nanotube with polyethylene and polypropylene oligomers. Him. Fiz. Tehnol. Poverhni. 2019. 10(1): 75. https://doi.org/10.15407/hftp10.01.075
29. Demianenko E.M., Terets M.I., Sementsov Yu.I., Makhno S.M., Kuts V.S., Grebenyuk A.G., Kartel M.T. Theoretical study on the effect of carbon graphenous nanoclusters on the stability and capacity of polyamide in a nanocomposite. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 355. https://doi.org/10.15407/hftp10.04.355
30. Kartel M., Sementsov Yu., Dovbeshko G., Karachevtseva L., Makhno S., Aleksyeyeva T., Grebel'na Yu., Styopkin V., Bo W., Stubrov Y. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428
31. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913
32. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785
33. Barca G., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152: 154102. https://doi.org/10.1063/5.0005188
34. Jackson K., Jaffar S.K., Paton R.S. Computational Organic Chemistry. Annual Reports Section B Organic Chemistry. 2013. 109: 235. https://doi.org/10.1039/c3oc90007j
35. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759
36. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30
37. Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988. 153(6): 503. https://doi.org/10.1016/0009-2614(88)85250-3
38. Mylvaganam K., Zhang L.C. Chemical bonding in polyethylene−nanotube composites: A Quantum Mechanics Prediction. J. Phys. Chem. B. 2004. 108(17): 5217. https://doi.org/10.1021/jp037619i
39. Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc. Faraday Trans. 1992. 88(4): 543. https://doi.org/10.1039/FT9928800543
40. Lodge T.P., Muthukumar M. Physical chemistry of polymers: entropy, interactions, and dynamics. J. Phys. Chem. 1996. 100(31): 13275. https://doi.org/10.1021/jp960244z
41. Yang Y., Ding X., Urban M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015. 49-50: 34. https://doi.org/10.1016/j.progpolymsci.2015.06.001
42. Karton A. Relative energies of increasingly large [n]helicenes by means of high-level quantum chemical methods. Mol. Phys. 2023. DOI: 10.1080/00268976.2023.2241927. https://doi.org/10.1080/00268976.2023.2241927
43. Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017. 19(48): 32184. https://doi.org/10.1039/C7CP04913G
44. Makhno S.M., Lisova O.M., Mazurenko R.V., Gorbyk P.P., Ivanenko K.O., Kartel M.T., Sementsov Yu.I. Electrophysical and strength characteristics of polychlorotrifluoroethylene filled with carbon nanotubes dispersed in graphene suspensions. Appl. Nanosci. 2023. https://doi.org/10.1007/s13204-023-02902-6. https://doi.org/10.1007/s13204-023-02902-6
DOI: https://doi.org/10.15407/hftp14.04.534
Copyright (©) 2023 Yu. V. Hrebelna, E. M. Demianenko, M. I. Terets, A. G. Grebenyuk, Yu. I. Sementsov, N. V. Sigareva, S. M. Makhno, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.