Chemistry, Physics and Technology of Surface, 2023, 14 (4), 561-568.

Optical absorption of composites with metallic nanosized spheroidal particles



DOI: https://doi.org/10.15407/hftp14.04.561

N. I. Pavlyshche, A. V. Korotun, V. P. Kurbatsky

Abstract


The paper considers the problem of light absorption by a nanocomposite with randomly oriented metal spheroidal particles-inclusions, provided that the volume content of such inclusions is small. Expressions for the frequency dependences of the effective dielectric function and the absorption coefficient of the metal-dielectric nanocomposite are obtained within the effective medium model taking into account the axial symmetry of spheroidal inclusions. The effective relaxation rate of electrons is introduced using the kinetic approach. Numerical calculations are performed for the cases when inclusion particles have the form of elongated and flattened nanospheroids. The results of the calculations indicate the presence of two maxima of the absorption coefficient, which correspond to longitudinal and transverse surface plasmon resonance. The change in the position and magnitude of the maxima of the frequency dependences of the effective dielectric function and the absorption coefficient with varying the size and shape of the spheroidal particles-inclusions is analyzed. It is shown that the greater the difference in the lengths of the semi-axes of the spheroids, the greater the distance between the maxima of the effective dielectric function and the absorption coefficient, and the shape of the curves depends on the eccentricity of spheroidal inclusions. It has been found that the position of the maxima is significantly influenced by the choice of the material of the inclusion particles and the matrix medium, while the height of the maxima is largely influenced by the shape of the nanoparticles, as well as their volume content in the composite medium. It is proved that, dependent on the material of nanoparticles-inclusions, both maxima of the absorption coefficient can be found in the visible part of the spectrum (for Au inclusions) or in the ultraviolet (for Al inclusions). It is also possible that one maximum lies in the visible part of the spectrum, and the other in the ultraviolet, which is the case for inclusions of Pd, Pt, Cu, Ag.


Keywords


nanocomposite; prolate and oblate spheroids; effective dielectric function; absorption coefficient; effective relaxation rate

Full Text:

PDF

References


1. Dmitruk N.L., Goncharenko A.V., Venger E.F. Optics of small particles and composite media. (Kyiv: Naukova Dumka, 2009).

2. Shang L., Bian T., Zhang B., Baihui Z., Zhang D., Wu L.-Z., Tung C.-H., Yin Y., Zhang T. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 2014. 53(1): 250. https://doi.org/10.1002/anie.201306863

3. Nanocolloids: A Meeting Point for Scientists and Technologists. Ed. by M. Sanchez-Dominguez and C. Rodriguez-Abreu (Elsevier, Amsterdam, 2016).

4. Levin V., Markov M., Mousatov A., Kazatchenko E., Pervago E. Effective electro-magnetic properties of microheterogeneous materials with surface phenomena. Eur. Phys. J. B. 2017. 90(192): 1. https://doi.org/10.1140/epjb/e2017-80294-1

5. Mitra A., De G. Glass Nanocomposites: Synthesis, Properties and Applications. Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass. (Elsevier: William Andrew, 2016). https://doi.org/10.1016/B978-0-323-39309-6.00006-7

6. Xiang W., Gao H., Ma L., Ma X., Huang Y., Pei L., Liang X. Valence state control and thirdorder nonlinear optical properties of copper embedded in sodium borosilicate glass. ACS Appl. Mater. Interfaces. 2015. 7(19): 10162. https://doi.org/10.1021/acsami.5b00218

7. Zhong J., Xiang W., Chen Z., Xie C., Luo L., Liang X. Microstructures and thirdorder optical nonlinearities of Cu2In nanoparticles in glass matrix. J. Alloys Compd. 2013. 572: 137. https://doi.org/10.1016/j.jallcom.2013.03.164

8. Karmakar B. Glass Nanocomposites: Synthesis, Properties and Applications. Chapter 1: Fundamentals of glass and glass nanocomposites. (Elsevier: William Andrew, 2016). https://doi.org/10.1016/B978-0-323-39309-6.00001-8

9. Korgel B.A. Composite for smarter windows. Nature. 2013. 500(7462): 278. https://doi.org/10.1038/500278a

10. Llordés A., Garcia G., Gazquez J., Milliron D.J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature. 2013. 500(7462): 323. https://doi.org/10.1038/nature12398

11. Luan F., Gu B., Gomes A.S.L., Yong K.-T., Wen S., Prasad P.N. Lasing in nanocomposite random media. Nano Today. 2015. 10(2): 168. https://doi.org/10.1016/j.nantod.2015.02.006

12. Kleemann W. Multiferroic and magnetoelectric nanocomposites for data processing. J. Phys. D Appl. Phys. 2017. 50(22): 223001. https://doi.org/10.1088/1361-6463/aa6c04

13. Barillaro G., Nannini A., Pieri F. APSFET: A new, porous silicon-based gas sensing device. Sens. Actuators, B. 2003. 93(1-3): 263. https://doi.org/10.1016/S0925-4005(03)00234-X

14. Dul S., Fambri L., Pegoretii A. Structure and Properties of Additive Manufactured Polymer Components. Development of new nanocomposites for 3D printing applications. (Elsevier: Woodhead Publishing, 2020). https://doi.org/10.1016/B978-0-12-819535-2.00002-8

15. Hauert R., Patscheider J. From alloying to nanocomposites-Improved performance of hard coatings. Adv. Eng. Mater. 2000. 2(5): 247. https://doi.org/10.1002/(SICI)1527-2648(200005)2:5<247::AID-ADEM247>3.0.CO;2-U

16. Shao H.-C., Zhang Y.-Y., Hussain S., Liu X.-C., Zhao L.-J., Zhang X.-Z., Liu G.-W., Qiao G.-J. Effects of Preform Structures on the Performance of Carbon and Carbon Composites. Sci. Adv. Mater. 2019. 11(7): 945. https://doi.org/10.1166/sam.2019.3511

17. Kravets V.G., Kabashin A.V., Barnes W.L., Grigorenko A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018. 118(12): 5912. https://doi.org/10.1021/acs.chemrev.8b00243

18. Lama P., Suslov A., Walser A.D., Dorsinville R. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability. Opt. Express. 2014. 22(11): 14014. https://doi.org/10.1364/OE.22.014014

19. Golovan L.A., Timoshenko V.Y. Nonlinear-Optical Properties of Porous Silicon Nanostructures. J. Nanoelectron. Optoelectron. 2013. 8(3): 223. https://doi.org/10.1166/jno.2013.1473

20. Rane A.V., Kanny K., Abitha V.K., Thomas S. Synthesis of Inorganic Nanomaterials. Chapter 5 - Methods for synthesis of nanoparticles and fabrication of nanocomposites. (Elsevier: Woodhead Publishing, 2018). https://doi.org/10.1016/B978-0-08-101975-7.00005-1

21. Hulkkonen H.H., Salminen T., Niemi T. Block Copolymer Patterning for Creating Porous Silicon Thin Films with Tunable Refractive Indices. ACS Appl. Mater. Interfaces. 2017. 9(37): 31260. https://doi.org/10.1021/acsami.6b16110

22. Korotun A.V., Koval A.O., Reva V.I. Optical absorption of composite with bilayer nanoparticles. J. Phys. Stud. 2019. 23(2): 2603. https://doi.org/10.30970/jps.23.2603

23. Korotun A.V., Koval' A.A., Titov I.N. Optical Absorption of a Composite Based on Bilayer Metal-Dielectric Spherical Nanoparticles. J. Appl. Spectrosc. 2020. 87(2): 240. https://doi.org/10.1007/s10812-020-00991-7

24. Grechko L.G., Motrych V.V., Ogenko V.M. Dielectric permeability of dispersed systems. Surface. 1993. 1: 17. [in Ukrainian].

25. Landau L.D., Lifshitz E.M. Course of Theoretical Physics, V. 8: Electrodynamics of Continuous Media. (Pergamon, New York, 1984). https://doi.org/10.1016/B978-0-08-030275-1.50007-2

26. Korotun A.V., Pavlyshche N.I. Optical absorption of a composite with randomly distributed metallic inclusions of various shapes. Funct. Mater. 2022. 29(4): 567. https://doi.org/10.15407/fm29.04.567

27. Smirnova N.A., Maniuk M.S., Korotun A.V., Titov I.M. An optical absorption of the composite with the nanoparticles, which are covered with the surfactant layer. Physics and Chemistry of Solid State. 2023. 24(1): 181. https://doi.org/10.15330/pcss.24.1.181-189




DOI: https://doi.org/10.15407/hftp14.04.561

Copyright (©) 2023 N. I. Pavlyshche, A. V. Korotun, V. P. Kurbatsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.