Chemistry, Physics and Technology of Surface, 2013, 4 (1), 105-112.

Sol-Gel Synthesis and Characterization of Mesoporous TiO2 Modified with Transition Metal Ions (Co, Ni, Mn, Cu)



DOI: https://doi.org/10.15407/hftp04.01.105

O. O. Kelyp, I. S. Petrik, V. S. Vorobets, N. P. Smirnova, G. Ya. Kolbasov

Abstract


Mesoporous nanosized titania films and powders modified with Co2+, Ni2+, Mn3+ and Cu2+ ions have been produced by templated sol-gel method and characterized by optical spectroscopy, XRD, and BET surface area measurment. After calcinations at 400°C, XRD patterns showed the anatase nanocrystalline phase formation (8–20 nm). The characteristic bands of Co2+ and Co3+ in octahedral and tetrahedral oxygen environment registered in diffusion reflectance spectra indicated the formation of Co3Ospinel phase; crystallization of M/TiO2 powders after heat treatment at 650°C led to an appearance of absorption bands belonging to Ni2+ or Mn3+ ions in an octahedral environment. Band gap energy and the position of flat band potentials were estimated by photoelectrochemical measurements. The films doped with transition metals possessed higher photocurrent quantum yield than that for undoped samples.

Full Text:

PDF

References


1. Aroutiounian V.M., Arakelyan V.M., Shahnazaryan G.E. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy. 2005. 78(5): 581. https://doi.org/10.1016/j.solener.2004.02.002

2. Grätzel M. Photovoltaic and photoelectro-chemical conversion of solar energy. Philosophical. Trans. Royal Soc. A. 2007. 365(1853): 993.

3. Zhang X., Li X., Wu J., Yang R., Tian L., Zhang Z. Simple sol-gel route to synthesis of mesoporous TiO2. J. Sol-Gel Sci. Technol. 2009. 51(1): 1. https://doi.org/10.1007/s10971-009-1984-4

4. Zhang W., Li R., He H. Synthesis of mesoporous TiO2-Al2O3 binary oxides photocatalyst by sol-gel method using PEG1000 as template. Int. J. Photoenergy. 2012. Article ID 108175: 1.

5. Eremenko A.M., Smirnova N.P., Petrk I.S., Hnatiuk Yu.I., Krylova G.V. Syntesis and properties of porous nanostructured films active in the ecological photocatalysis. Nanosystems, Nanomaterials, Nanotechnologies. 2004. 2(2): 477. [in Ukrainian].

6. Gnatyuk Yu., Eremenko A., Smirnova N., Ilyin V. Design and photocatalytic activity of mesoporous TiO2/ZrO2 thin films. J. Ads. Sci. Technol. 2005. 23(6): 497.

7. Smirnova N., Gnatyuk Yu., Eremenko A., Kolbasov G., Vorobetz V., Kolbasova I., Linyucheva O. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films. Int. J. Photoenergy. 2006. 8: 1. https://doi.org/10.1155/IJP/2006/85469

8. Krylova G.V., Gnatyuk Yu.I., Eremenko A.M., Smirnova N.P., Gun'ko V.M. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol. 2009. 50(2): 216. https://doi.org/10.1007/s10971-009-1954-x

9. López R., Gómez R., Lianos M.E. Photophysical and photocatalytical properties of nanosized copper-doped titania sol-gel catalysts. Catal. Today. 2009. 148(1–2): 103. https://doi.org/10.1016/j.cattod.2009.04.001

10. Ghasemi S., Rahimnejad S., Setayesh R., Rohani S.S., Gholami M.R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 2009. 172(2–3): 1573. https://doi.org/10.1016/j.jhazmat.2009.08.029

11. Petrik I., Kelyp O., Vorobets V., Smirnova N., Frolova O., Oranska O., Kolbasov G., Eremenko A. Synthesis, optical, electro- and photocatalytic properties of nanosized TiO2- films modified with transition metal (Co, Ni, Mn, Cu) ions. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 436. [in Ukrainian].

12. Xu J.P., Shi S.B., Li L., Wang J.F., Lv L.Y., Zhang F.M., Du Y.W. Effect of manganese ions concentration on the anatase–rutile phase transformation of TiO2 films. J. Phys. Chem. Solids. 2009. 70(3–4): 511. https://doi.org/10.1016/j.jpcs.2008.06.113

13. Rocquefelte X., Goubin F., Koo H.-J., Whangbo M.-H., Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2 phases. Inorg. Chem. 2004. 43(7): 2246. https://doi.org/10.1021/ic035383r

14. Gomathi D.L., Nagaraju K., Narasimha M.B., Girish K.S. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of aniline blue under UV/solar light. J. Mol. Catal. A: Chem. 2010. 328(1–2): 44.

15. Dong Y.L., Won J.L., Jae Sung S., Koh J.H., Kim Y.S. Electronic surface state of TiO2 electrode doped with transition metals, studied with cluster model and DV-Xα method. Comput. Mater. Sci. 2004. 30(3–4): 383.

16. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids. 2002. 63(10): 1909. https://doi.org/10.1016/S0022-3697(02)00177-4

17. Choi W., Termin A., Hoffmann M.R. The role of metal ion dopants in quantum-sized TiO2: correlation between. photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994. 98(51): 13669. https://doi.org/10.1021/j100102a038

18. Oleksenko L., Lutsenko L. Co-containing systems based on zeolites ZSM-5, erionite, Al2O3 and SiO2 in CO oxidation. Him. Fiz. Tehnol. Poverhni. 2004. 10: 132. [in Ukrainian].

19. Liver A.B.P. Inorganic Electronic Spectroscopy. Part 2. (Amsterdam: Elsevier, 1984).

20. Kosova N.V., Devyatkina E.T., Anufrienko V.F., Vasenin N.T., Vosel' S.V., Larina T.V. Using of mechanical activation in the rechargeable lithium batteries creation. Chem. Sustainable Development. 2002. 10: 127. [in Russian].

21. Roy S., Ganguli D. Optical properties of Ni2+-doped silica and silicate gel monoliths. J. Non-Cryst. Solids. 1992. 151(3): 203. https://doi.org/10.1016/0022-3093(92)90030-N

22. Sjoerd K.W., Poels E.K., Bliek A. Weckhuysen B.M., Schoonheydt R.A. Characterization of Al2O3-supported manganese oxides by electron spin resonance and diffuse reflectance spectroscopy. J. Phys. Chem. B. 1997. 101(3): 309. https://doi.org/10.1021/jp962343i

23. Bezmaternyh L., Poceluiko A., Yerlykova E., Edelman I. Optical absorbance of copper metaborate CuB2O4. Solid State Physics. 2001. 43(2): 297. [in Russian].

24. Linsebigler A.L., Lu G.Q., Yates J.T. Photocatalysis on TiO2 surfaces: principles, mechanism and selected results. Chem. Rev. 1995. 95(3): 735. https://doi.org/10.1021/cr00035a013 25. Gurevich Yu., Pleskon Yu. Photoelectrochemistry of the semiconductors. (Moscow: Nauka, 1983). [in Russian].

26. Kolbasov G., Gorodyskyi A. Photoinduced charge-transfer processes in semiconductor-electrolyte systems. (Kyiv: Naukova dumka, 1993). [in Russian].

27. Hamilton J.W.J., Byrne J.A., McCullagh C., Dunlop P.S.M. Electrochemical investigation of doped titanium dioxide. J. Photoenergy. 2008. 2008(Article ID 631597): 1.

28. Sakthivel S., Kish H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem. Phys. 2003. 4(5): 487. https://doi.org/10.1002/cphc.200200554

29. Grätzel M., Gilbert S.E., Klemenz C., Scheel H.J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 1996. 118(28): 6716. https://doi.org/10.1021/ja954172l

30. Kelyp O., Vorobets V., Kolbasov G., Smirnova N. Electro- and photocatalytic properties of 3d-metals modified TiO2-films. Visnyk Lviv Univ. Ser. Chem. 2012. 53: 392. [in Ukrainian].




DOI: https://doi.org/10.15407/hftp04.01.105

Copyright (©) 2013 O. O. Kelyp, I. S. Petrik, V. S. Vorobets, N. P. Smirnova, G. Ya. Kolbasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.