Chemistry, Physics and Technology of Surface, 2020, 11 (2), 281-287.

Research on crystal structure and morphology of the surfaces of thin films of PbTe and PbTe < Bi2Te3 >



DOI: https://doi.org/10.15407/hftp11.02.281

Y. V. Tur, Y. V. Pavlovskyi, I. S. Virt

Abstract


The structural characteristics and surface morphology of PbTe thin films and PbTe<Bi2Te3> film composites grown by pulsed laser deposition at TS = 200 °C, with surface consisting of small grains of about 100 nm in size, are examined. On the basis of the analysis of the results of AFM images, the processes of structure formation of PbTe and PbTe<Bi2Te3> condensates on different substrates were studied. It is shown that the processes of nucleation of semiconductor grains are dominated by the Volmer-Weber mechanism, in which three-dimensional nanoscale superstructures are formed on the surface of the substrate. A feature of the two AFM images is that the surface of the films is uniform and fine-grained. The surface morphology shows that a large number of particles are uniformly distributed throughout the surface. The surface roughness, the size of the nanocrystals in the lateral direction and their height are determined.

The structure characteristics and parameters of the crystal lattice of thin films grown by X-ray diffractometry were determined. The diffraction dependences for the PbTe<Bi2Te3> film are presented. It is found that the presence of sharp peaks in the diffraction patterns of pure PbTe indicates the polycrystalline nature of the films. Indices of defined crystalline planes at the peaks are indicated. The nature of the dependences is confirmed by the rock salt structure (NaCl). According to the structure studies, it has been found that increasing grain size can be seen as a columnar increase in grain in the structure.


Keywords


atomic force microscopy; pulsed laser deposition; PbTe; thin films

Full Text:

PDF (Українська)

References


1. Pichanusakorn P., Bandaru P. Nanostructured thermoelectrics. Mater. Sci. Eng. R. 2010. 67: 19. https://doi.org/10.1016/j.mser.2009.10.001

2. Samavat F., Fereidouni Z., Ghaderi F. Study of the Structural Properties and Morphologies of Gold Thin Films Deposition by Annealing. J. Biotechnol. Res. 2018. 4(11): 83.

3. Han C., Tan G., Varghese T., Kanatzidis M.G., Zhang Y. High-Performance PbTe Thermoelectric Films by Scalable and Low-Cost Printing. ACS Energy Lett. 2018. 3(4): 818. https://doi.org/10.1021/acsenergylett.8b00041

4. Samoylov M., Kuzminykh O.G., Synorov Yu.V., Belonogov E.K., Belenko S.V., Agapov B.L. Growth Kinetics and Microstructure of PbTe Films Produced on Si and BaF2 Substrates by a Modified Hot-Wall Method. Inorg. Mater. 2018. 54(4): 338. https://doi.org/10.1134/S002016851804012X

5. Zheng J.-C. Recent advances on thermoelectric materials. Front. Phys. China. 2008. 3(3): 269. https://doi.org/10.1007/s11467-008-0028-9

6. Ivanova L.D. Thermoelectric materials for different temperature levels. Semiconductors. 2017. 51: 909. https://doi.org/10.1134/S1063782617070132

7. Pei Y., Wang H., Snyder G.J. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012. 24(46): 6125. https://doi.org/10.1002/adma.201202919

8. Xianli Su, Ping Wei, Han Li, Wei Liu, Yonggao Yan, Peng Li, Chuqi Su, Changjun Xie, Wenyu Zhao, Pengcheng Zhai, Qingjie Zhang, Xinfeng Tang, Ctirad Uher. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. Adv. Mater. 2017. 29(20): 1602013. https://doi.org/10.1002/adma.201602013

9. Zhang D., Wang Y., Yang Y. Design, Performance, and Application of Thermoelectric Nanogenerators. Small. 2019. 15(32): 1805241. https://doi.org/10.1002/smll.201805241

10. Freik D.M., Lishchynskyi I.M., Lytvyn P.M., Bachuk V.V. Surface, Topology and Growth Processes of PbTe Nanocrystalline. Structures on Mica-Muscovite Cleavages Substrate. Physics and Chemistry of Solid State. 2008. 9: 736. [in Ukrainian].

11. Freik D.M., Litvin P.M., Chav'jak I.I., Lishhins'kij I.M., Bachuk V.V. The processes of growth of nanoscale structures PbTe and ripening ostvald. Physics and Chemistry of Solid State. 2009. 10(4): 789. [in Ukrainian].

12. Jacquot A., Lenoir B., Boffou M.O., Dauscher A. Pulsed laser deposition of PbTe films on glass substrates. Appl. Phys. A. 2009. 69: 613. https://doi.org/10.1007/s003390051488

13. Belouet C. Thin film growth by the pulsed laser assisted deposition technique. Appl. Surf. Sci. 1996. 96-98: 630. https://doi.org/10.1016/0169-4332(95)00535-8

14. Dobson J.F., Gould T. Calculation of dispersion energies. J. Phys.: Condens. Matter. 2012. 24(7): 073201. https://doi.org/10.1088/0953-8984/24/7/073201

15. Denisyuk A.I., Krasavin A.V., Komissarenko F.E., Mukhin I.S. Mechanical, Electrostatic, and Electromagnetic Manipulation of Microobjects and Nanoobjects in Electron Microscopes. Advances in Imaging and Electron Physics. 2014. 186: 101. https://doi.org/10.1016/B978-0-12-800264-3.00003-4

16. Ponchet A., Patriarche G., Rodriguez J.B., Cerutti L., Tourni E. Interface energy analysis of III-V islands on Si (001) in the Volmer-Weber growth mode. Appl. Phys. Lett. 2018. 113(19): 191601-1. https://doi.org/10.1063/1.5055056

17. Sarkar R., Rajagopalan J. Synthesis of thin films with highly tailored microstructures. Mater. Res. Lett. 2018. 6(7): 398. https://doi.org/10.1080/21663831.2018.1471420

18. Manonmani Parvathi M., Arivazhagan V., Rajesh S. Quantum size effect on cubic PbTe nanocrystals embedded in amorphous InSe thin film matrix. Superlattices Microstruct. 2014. 75: 901. https://doi.org/10.1016/j.spmi.2014.09.022

19. Mahalingam T., Thanikaikarasan S., Sundaram K., Raja M., Rhee J.-K. Electrochemical Deposition and Characterization of Lead Telluride Thin Film. J. New Mater. Electrochem. Syst. 2010. 13(1): 35.

20. Jacquot A., Lenoir B., Boffou'e M.O., Dauscher A. Pulsed laser deposition of PbTe films on glass substrates. Appl. Phys. A. 1999. 69: 613. https://doi.org/10.1007/s003390051488

21. Mei D., Li Y., Yao Z., Wang H., Zhu T., Chen S. Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing. J. Alloys Compd. 2014. 609: 201. https://doi.org/10.1016/j.jallcom.2014.04.116




DOI: https://doi.org/10.15407/hftp11.02.281

Copyright (©) 2020 Y. V. Tur, Y. V. Pavlovskyi, I. S. Virt

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.