Chemistry, Physics and Technology of Surface, 2020, 11 (4), 445-455.

Exciton-polaritons in 2d macroporous silicon structures with nano-coatings



DOI: https://doi.org/10.15407/hftp11.04.445

L. A. Karachevtseva, O. O. Lytvynenko, V. F. Onyshchenko, V. V. Strelchuk, V. A. Boyko

Abstract


In this paper, we investigated high-resolution IR absorption and reflection spectra in one-sided periodical   2D macroporous silicon structures with nano-coatings of SiO2 and CdS, ZnO nanoparticles, as well as two-sided structures of macroporous silicon without nano-coatings. After changing the resolution of spectra measurements from 2 to 1 cm–1, the oscillation period of Wannier-Stark electro-optical effect decreases by 3 times, and absorption increases by 60–100 times; and for two-sided structures the oscillation period decreases by 1.5 times and absorption increases by 25–30 %. In addition, giant absorption oscillations with positive and negative amplitudes of 107 arb. un. were evaluated in spectral regions of Si–Si–bonds and Pb centers. Similar oscillations in the reflection spectra have much less amplitudes up to 4·104 arb. un. In the spectral area of the transverse phonon ωTO (Si–Si–bonds) absorption spectra of 2D macroporous silicon structures consistent fully with data for phonon polaritons in microresonators as a result of resonance interaction of dipole-active vibrations with the frequency of ωTO in thin films with the surface modes of microresonator. In addition, microresonators interact both with each other in one-sided macroporous silicon structures and in the system of two-sided macroporous silicon. The giant absorption oscillations testify the strong interaction of surface polaritons with photons. The coherence of oscillations and large-scale spatial correlation are а result of exciton-polariton condensation on macropores as microresonators. In 2D macroporous silicon structures with nano-coatings band bending on the surface of the macropores are significant. Therefore, the generated photoelectrons link with holes, forming electron-hole pairs named as exciton-polaritons according to phenomenon of Bose-Einstein condensation.


Keywords


one-sided and two-sided macroporous silicon structures; nano-coatings of nanocrystals; exciton-polaritons; Bose-Einstein condensation

Full Text:

PDF

References


1. Birner A., Wehrspohn R.B., Gösele U.M., Busch K. Silicon-Based Photonic Crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X

2. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2004. 7(4): 430. https://doi.org/10.15407/spqeo7.04.430

3. Karachevtseva L.A., Glushko A.E., Ivanov V.I., Lytvynenko O.O., Onishchenko V.F., Parshin K.A., Stronska O.J. Out-of-plane optical transmittance of 2D photonic macroporous silicon structures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2007. 10(2): 51.

4. Glushko A., Karachevtseva L. Photonic band structure of oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9

5. Glushko A., Karachevtseva L. PBG properties of three-component 2D photonic crystals. Photonics Nanostruct. Fundam. Appl. 2006. 4(3): 141. https://doi.org/10.1016/j.photonics.2006.02.003

6. Karachevtseva L., Karas' N., Onischenko V., Sizov F. Surface polaritons in 2D macroporous silicon structures, Int. J. Nanotechnol. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722

7. Holiney R.Yu., Matveeva L.A., Venger E.F., Karachevtseva L.A., Lytvynenko O.A. Electroreflectance study of macroporous silicon surfaces. Appl. Surf. Sci. 2001. 172(3-4): 214. https://doi.org/10.1016/S0169-4332(00)00861-8

8. Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 3328. https://doi.org/10.1016/j.apsusc.2008.09.038

9. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2011. 257(8): 3331. https://doi.org/10.1016/j.apsusc.2010.11.016

10. Karachevtseva L., Goltviansky Yu., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings. Appl. Surf. Sci. 2016. 388(1): 120. https://doi.org/10.1016/j.apsusc.2016.03.026

11. Karachevtseva L.A. Coherent oscillations in IR spectra of 2D macroporous silicon structures with surface nanocoatings. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 115. https://doi.org/10.15407/hftp11.01.115

12. Patent UA 136455. Karachevtseva L. Method for Manufacturing of Optical Quantum Computer. 2019.

13. Karachevtseva L.A., Litvinenko O.A., Stronskaya E.I. Influence of Electrochemical Parameters on the Etching of Macropores in Silicon. Theor. Exp. Chem. 2003. 39(6): 385. https://doi.org/10.1023/B:THEC.0000013993.88442.0e

14. Mao J., Yao J.-N., Wang L.-N., Liu W.-S. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranchedpolyethylenimine as modifier. J. Colloid Interface Sci. 2008. 319(1): 353. https://doi.org/10.1016/j.jcis.2007.10.027

15. Karachevtseva L., Kuchmii S., Stroyuk A., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Light-emitting structures of CdSnanocrystals in oxidized macroporous silicon. Appl. Surf. Sci. 2016. 388(1): 288. https://doi.org/10.1016/j.apsusc.2016.01.069

16. Stroyuk A.L., Shvalagin V.V., Kuchmii S.Ya. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobiol. A. 2005. 173(2): 185. https://doi.org/10.1016/j.jphotochem.2005.02.002

17. Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Wang B., Bratus' V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029

18. Hopfield J.J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958. 112: 1555. https://doi.org/10.1103/PhysRev.112.1555

19. Pekar S.I. The theory of electromagnetic waves in a crystal in which excitonsare produced. Sov. Phys. JETP. 1958. 6(33): 785.

20. Vinogradov E.A. Semiconductor microcavitypolaritons, Sov. Phys. Usp. 2002. 172(12): 1371. https://doi.org/10.3367/UFNr.0172.200212b.1371

21. Kasprzak J., Richard M., Kundermann S., Baas A., Jeambrun P., Keeling J.M.J., Marchetti B., Szymacska F.M., Andre R., Staehli J.L., Savona V., Littlewood P.B., Deveaud B., Dang Le Si. Bose-Einstein condensation of excitonpolaritons. Nature. 2006. 443: 409. https://doi.org/10.1038/nature05131

22. Timofeev V.B. On Bose condensation of excitons in quasi-two-dimensional semiconductor heterostructures. Low Temperature Physics. 2012. 38(7): 693. https://doi.org/10.1063/1.4733681

23. Ohtani K., Meng B., Franckié M., Bosco L., Ndebeka-Bandou C., Beck M., Faist J. An electrically pumped phonon-polariton laser. Sci. Adv. 2019. 5(7): 1632. https://doi.org/10.1126/sciadv.aau1632

24. Karachevtseva L., Kuchmii S., Kolyadina O., Lytvynenko O., Matveeva L., Sapelnikova O., Smirnov O., Stroyuk O. Quantum-sized effects in oxidized silicon structures with surface II-VI nanocrystals. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2014. 17(2): 168. https://doi.org/10.15407/spqeo17.02.168

25. Kang J.W., Song B., Liu W., Park S.-J., Agarwal R., Chang-Hee Cho C.-H. Room temperature polariton lasing in quantum heterostructurenanocavities. Sci. Adv. 2019 5(4): 9338. https://doi.org/10.1126/sciadv.aau9338




DOI: https://doi.org/10.15407/hftp11.04.445

Copyright (©) 2020 L. A. Karachevtseva, O. O. Lytvynenko, V. F. Onyshchenko, V. V. Strelchuk, V. A. Boyko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.