Chemistry, Physics and Technology of Surface, 2022, 13 (3), 259-273.

Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology



DOI: https://doi.org/10.15407/hftp13.03.259

O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, O. O. Havryliuk

Abstract


Carbon nanostructures (CNS) were synthesized by the electric arc plasma chemical method during the evaporation of a high-quality graphite electrode of the brand “fine-grained dense graphite” (FGDG-7) filled with a catalyst (Pt), which was evaporated in a helium environment. In the synthesis process, the following were synthesized: multi-walled (MWCNT) and single-walled carbon nanotubes (SWCNT), fullerenes, graphene packets and nanocomposites. A deposit in the form of growth on the cathode electrode was also synthesized. All synthesis products were analyzed at the micro- and nanolevels, which made it possible to analyze the influence of platinum vapors on the formation of carbon nanomaterials (CNM). The non-uniform distribution of catalyst atoms (platinum) in the products of electrochemical synthesis in a gas medium using FGDG-7 graphite was investigated.

During the analysis, it was found that platinum is in the state of the face-centered cubic (FCC) lattice and is distributed in the synthesis products as follows: the core of the deposit is less than < 0.001 %, the shell of the deposit is less than < 1 %, the wall soot is more than > 1 %. The morphology and composition of the platinum deposit, which has a hexagonal graphite structure with an admixture of a rhombohedral graphite phase, was studied. In the studies, differential thermal analysis in air (TG, DTG, DTA) was carried out, which made it possible to identify the composition of the synthesis products. It is an established fact that the parts of the deposit with platinum are more heat-resistant compared to the deposit components that do not contain Pt. The resulting carbon nanotubes (CNTs) in diameter (5–25 nm) and length (1.5–2 μm) do not differ from those obtained without the participation of platinum, except for some anomalies.

When studying the suitability of platinum-containing carbon nanostructures for 3D printing of CJP (ceramic printing) technology, it was found that for the use of platinum-containing carbon black, it is necessary to carry out a preliminary short-term treatment, namely, grinding in special “ball mills” or rubbing through a fine sieve with minimal effort to create uniformity product. Previous studies have shown that such platinum-containing carbon nanostructures can already be used in 3D printing of CJP technology, or to create new composites for 3D printing technologies of FDM, SLA.


Keywords


carbon nanostructures; platinum (Pt); fullerenes; graphenes; deposit; plasma; electric arc synthesis; plasma chemical synthesis; 3D printing; CJP technology

Full Text:

PDF

References


Schur D.V., Zaginaichenko S.Y., Veziroglu T.N. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energy. 2015. 40(6): 2742. https://doi.org/10.1016/j.ijhydene.2014.12.092

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Viziroglu A., Viziroglu T.N., Gabdullin M.T., Javadov N.F., Zolotarenko An.D., Zolotarenko Al.D. Hydrogen in crystals. (Kyiv: Publishing house "KIM", 2017).

Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Schur D.V., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47

Schur D.V., Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064

Schur D.V., Gabdullin M.T., Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Veziroglu T.N., Veziroglu A., Gabdullin M.T., Zolotarenko Al.D., Zolotarenko An.D. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energy. 2018. 43(33): 16092. https://doi.org/10.1016/j.ijhydene.2018.06.168

Schur D.V., Zaginaichenko S.Yu., Veziroglu A., Veziroglu T.N., Zolotarenko A.D., Gabdullin M.T., Zolotarenko A.D. Features of studying of atomic hydrogen-metal systems. Alternative Energy and Ecology (ISJAEE). 2019. 13-15: 62. https://doi.org/10.15518/isjaee.2019.13-15.62-87

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T., Kopylova L.I., Shaposhnikova T.I. Phase Transformations in the Mixed Lithium-Magnesium Imide Li2Mg(NH)2. Russ. Phys. J. 2019. 61(12): 2244. https://doi.org/10.1007/s11182-019-01662-7

Schur D.V., Veziroglu A., Zaginaychenko S.Y., Matysina Z.A., Veziroglu T.N., Gabdullin M.T., Ramazanov T.S., Zolonarenko A.D., Zolonarenko A.D. Theoretical studies of lithium-aluminum amid and ammonium as perspective hydrogen storage. Int. J. Hydrogen Energy. 2019. 44(45): 24810. https://doi.org/10.1016/j.ijhydene.2019.07.205

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T. Balalic and potassium alanates are perspective storages of hydrogen. Alternative Energy and Ecology (ISJAEE). 2017. 13-15: 37. https://doi.org/10.15518/isjaee.2017.13-15.037-060

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T. Hydrogen Sorption Properties of Potassium Alanate. Russ. Phys. J. 2018. 61(2): 253. https://doi.org/10.1007/s11182-018-1395-5

Zolotarenko A.D., Zolotarenko A.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Schur D.V., Gavrylyuk N.A., Ramazanov T.S., Akhanova N.Y., Gabdullin M.T. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen - metal. Int. J. Hydrogen Energy. 2022. 47(11): 7310. https://doi.org/10.1016/j.ijhydene.2021.03.065

Matysina Z.A., Gavrylyuk N.A., Kartel M.T., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

Zolotarenko A.D., Zolotarenko A.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Gavrylyuk N.A., Schur D.V., Ramazanov T.S., Gabdullin M.T. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energy. 2022. 47(11): 7281. https://doi.org/10.1016/j.ijhydene.2021.03.025

Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Zolotarenko A.D. Prospects for obtaining hydrogen-ammonia fuel using lithium-aluminum amide. News of higher educational institutions. Physics. 2021. 64(1): 78. https://doi.org/10.1007/s11182-021-02304-7

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T. Hydrogen sorption properties of potassium alanates. News of higher educational institutions. Physics. 2018. 61(2): 44. https://doi.org/10.1007/s11182-018-1395-5

Schur D.V., Zaginaichenko S.Yu., Veziroglu T.N., Veziroglu A., Pomytkin A.P., Zolonarenko An.D., Zolonarenko A.D., Zolonarenko Al.D. Interaction of Elements With Hydrogen and With Each Other. International Association for Hydrogen Energy (IAHE). 2018. http://aheu.com.ua/TabMen/index.html

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T. Shaposhnikova T. Phase transformations in mixed lithium-magnesium imide Li2Mg(NH)2. News of higher educational institutions. Physics. 2018. 61(12): 90 https://doi.org/10.1007/s11182-019-01662-7

Matysina Z.A., Zolonarenko An.D., Zolonarenko Al.D., Gavrylyuk N.A., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Gabdullin M.T. Features of the interaction of hydrogen with metals, alloys and compounds (Hydrogen atoms in crystalline solids). (Kyiv: "KIM" Publishing House, 2022).

Schur D.V., Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Comd. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

Lytvynenko Yu.M., Schur D.V. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu., Schur D.V. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

Matysina Z.A., Shchur D.V. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

Zaginaichenko S.Y., Matysina Z.A., Schur D.V., Zolotarenko A.D. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energy. 2012. 37(9): 7565. https://doi.org/10.1016/j.ijhydene.2012.01.006

Schur D.V., Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

Schur D.V., Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energy. 1994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

Matysina Z.A., Zaginaichenko S.Y., Shchur D.V., Gabdullin M.T. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russ. Phys. J. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

Zaginaichenko S.Y., Matysina Z.A., Schur D.V., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

Zaginaichenko S.Y., Zaritskii D.A., Schur D.V., Matysina Z.A., Veziroglu T.N., Chymbai M.V., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

Matysina Z.A., Zaginaichenko S.Y., Shchur D.V. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Met. Metall. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

Trefilov V.I., Schur D.V., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

Khidirov I., Mirzaev B.B., Mukhtarova N.N., Kholmedov K.M., Zaginaichenko S.Y., Schur D.V. Neutron diffraction investigation of hexagonal and cubic phases of system Ti-C-H. NATO Science for Peace and Security Series C: Environmental Security. F2: 663. https://doi.org/10.1007/978-1-4020-8898-8_83

Zolotarenko O.D., Rudakova O.P., Kartel M.T., Kaleniuk H.O., Zolotarenko A.D., Schur D.V., Tarasenko Y.O. The mechanism of forming carbon nanostructures by electric arc-method. Surface. 2020. 12(27): 263. [in Ukrainian]. https://doi.org/10.15407/Surface.2020.12.263

Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 209. [in Ukrainian]. https://doi.org/10.15407/hftp13.02.209

Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25

Zaginaichenko S.Y., Schur D.V., Gabdullin M. T., Javadov M.T., Zolotarenko A.D., Zolotarenko A.D, Mamedov Z.T. Features of pyrolytic synthesis and certification of carbon nanostructured materials. Alternative energy and ecology (ISJAEE). 2018. 19-21: 72. https://doi.org/10.15518/isjaee.2018.19-21.072-090

Zaginaichenko S.Y., Schur D.V., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko A.D., Zolotarenko A.D. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. Ceram. 2018. 56(9): 504. https://doi.org/10.1007/s11106-018-9922-z

Gun'ko V.M., Turov V.V., Schur D.V., Zarko V.I., Prykhod'ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016

Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D., Veziroglu T.N. Solubility and transformation of fullerene C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. F2: 85. https://doi.org/10.1007/978-1-4020-8898-8_7

Nishchenko M.M., Likhtorovich S.P., Schur D.V., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

Schur D.V., Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. F2: 53. https://doi.org/10.1007/978-1-4020-8898-8_5

Zolotarenko A.D., Zolotarenko A.D., Zolotarenko A.D. Voychuk G.A., Shchur D.V., Zagynaichenko S.Yu. Synthesis of endofullerenes by the arc method. Deposit. Nanosystems, Nanomaterials, Nanotechnologies. 2005. 3(4): 1133.

Gavrylyuk N.A., Akhanova N.Y., Shchur D.V., Pomytkin A.P., Veziroglu A., Veziroglu T.N. Zolotarenko A.D. Yttrium in fullerenes. Alternative energy and ecology (ISJAEE). 2021. 01-03: 47.

Akhanova N.Y., Shchur D.V., Pomytkin A.P., Zolotarenko A.D., Zolotarenko A.D., Gavrylyuk N.A. Ang D. Gadolinium Endofullerenes. J. Nanosci. Nanotechnol. 2021. 21(4): 2435. https://doi.org/10.1166/jnn.2021.18970

Akhanova N.Y., Shchur D.V., Pomytkin A.P., Zolotarenko A.D., Zolotarenko A.D., Gavrylyuk N.A., Ang D. Methods for the Synthesis of Endohedral Fullerenes. J. Nanoscie. Nanotechnol. 2021. 21(4). 2446. https://doi.org/10.1166/jnn.2021.18971

Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P. , Akhanova N.Y. , Pomytkin A. P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M. , Gavrylyuk N.A. , Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.

Gavrylyuk N.A., Akhanova N.Y., Schur D.V., Pomytkin A.P., Veziroglu A., Veziroglu T.N., Gabdullin M.T., Ramazanov T.S., Zolotarenko Al.D., Zolotarenko An.D. Yttrium in Fullerenes. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), Scientific Technical Centre "TATA". 2021. 01-03: 359.

Akhanova N.Y., Schur D.V., Gavrylyuk N.A., Gabdullin M.T., Anikina N.S., Zolotarenko An.D., Krivushchenko O.Ya., Zolotarenko Ol.D., Gorelov B.M., Erlanuli E., Batrishev D.G. Use of absorption spectra for identification of endometallofullerenes. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 429. [in Ukrainian]. https://doi.org/10.15407/hftp11.03.429

Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Zolotarenko O.P., Chimbai M.V., Akhanova N.Y., Zolotarenko E.P. Analysis and Identification of Platinum-containing Nanoproducts of Plasma-chemical Synthesis in a Gaseous Medium. Current Trends in Chemical Engineering and Technology. 2018. 01: 1. https://doi.org/10.26577/phst-2019-1-p9

Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Zolotarenko O.P., Chimbai M.V., Akhanova N.Y., Zolotarenko E.P. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 2019. 6(1-2): 46. https://doi.org/10.26577/phst-2019-1-p9

Zolotarenko A.D., Zolotarenko A.D., Lavrenko V.A., Zaginaichenko S.Y., Shvachko N.A., Milto O.V., Tarasenko Y.A. Encapsulated ferromagnetic nanoparticles in carbon shells. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011: 127. https://doi.org/10.1007/978-94-007-0899-0_10

Ualkhanova M., Perekos A.Y., Dubovoy A.G., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Orazbayev S. The Influence of Magnetic Field on Synthesis of Iron Nanoparticles. Journal of Nanoscience and Nanotechnology Applications. 2019. 3(3): 1. https://doi.org/10.18875/2577-7920.3.302

Dubovoy A.G., Perekos A.E., Lavrenko V.A., Rudenko Yu.M., Efimova T.V., Zalutsky V.P., Zolotarenko A.D. Influence of a magnetic field on the phase-structural state and magnetic properties of fine Fe powders obtained by electrospark dispersion. Nanosystems, nanomaterials, nanotechnologies. 2013. 11(1): 131.

Zolotarenko A.D., Zolotarenko A.D., Rudakova E., Zaginaichenko S.Y., Dubovoy A.G., Schur D.V., Tarasenko Y.A. The Peculiarities of Nanostructures Formation in Liquid Phase. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011: 137. https://doi.org/10.1007/978-94-007-0899-0_11

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu.O., Zagorulko I.V., Zolotarenko A.D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417.

Volodin A.A., Zolotarenko A.D., Belmesov A.A., Gerasimova E.V., Shchur D.V., Tarasov V.R., Zolotarenko A.D. Electrically conductive composite materials based on metal oxides and carbon nanostructures. Nanosystems, nanomaterials, nanotechnologies. 2014. 12(4): 705.

Lavrenko V.A. Electrochemical Synthesis of Ammonium Persulfate (NH4)2S2O8 Using Oxygen-Depolarized Porous Silver Cathodes Produced by Powder Metallurgy Methods. Powder Metallurgy and Metal Ceramics. 2019. 57(9): 596. https://doi.org/10.1007/s11106-019-00021-y

Baskakov S.A. New composite materials based on reduced graphene oxide and polyaniline in high-capacity supercapacitors. Nanosystems, Nanomaterials, Nanotechnologies. 2015. 13(1): 37.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. Noveishie Tekhnol. 2022. 44(3): 343. [in Ukrainian].

Baibarac M., Baltog I., Frunza S., Magrez A., Schur D., Zaginaichenko S.Y. Single-walled carbon nanotubes functionalized with polydiphenylamine as active materials for applications in the supercapacitors field. Diamond Relat. Mater. 2013. 32: 72. https://doi.org/10.1016/j.diamond.2012.12.006

Schur D.V., Gabdullin M.T., Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

Bol'shaja sovetskaja enciklopedija. (Moscow: Sovetskaja enciklopedija, 1969-1978). [in Russian].

Matysina Z.A., Zolotarenko Ol.D., Ualkhanova M., Rudakova O. P., Akhanova N.Y., Zolotarenko An. D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko O. D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

Zolotarenko O.D., Zolotarenko A.D., Schur D.V. Nanotubes in ceramic composites for practical applications in 3D printing (CJP). In: Tendencies of development science and practice. Abstracts of VI International Scientific and Practical Conference. (Boston, USA, 2022). P. 73.

Zolotarenko Ol., Rudakova E., Zolotarenko An., Schur D., Chymbai M. Proc. of IX International Scientific and Practical Conference "Trends of development modern science and practice". (November 16-19, 2021, Stockholm, Sweden). P. 107.

Zolotarenko O., Zolotarenko A., Schur D., Sementsov Y., Gavrylyuk N. Improvements in 3D printing technology based on carbon nanostructures for medical and biological purpose. In: Innovative trends of science and practice, tasks and ways to solve them. Proceedings of the XXV International Scientific and Practical Conference (Athens, Greece, 2022). P. 74.

Zolotarenko Ol.D., Rudakova E.P., Zolotarenko An.D., Akhanova N.Y., Ualkhanova M., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V. Carbon nanostructures as fillers of solid polymers that increase the characteristics of a composite adapted for 3D printing (FDM). In: 8-th International Samsonov Conference "Materials Science of Refractory Compounds". (May 24-27, 2022, Kyiv, Ukraine). P.32.

Zolotarenko O.D., Zolotarenko A.D., Schur D.V. Advantages of FDM 3D printing technology and practical use of new composites based on solid polymers filled with carbon nanostructures. In: IV International Scientific and Practical Conference "Actual Problems of Practice And Science And Methods of Their Solution". (2022, Milan, Italy). P 134.




DOI: https://doi.org/10.15407/hftp13.03.259

Copyright (©) 2022 O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, O. O. Havryliuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.