Chemistry, Physics and Technology of Surface, 2022, 13 (3), 301-310.

Physical and chemical factors influencing the porosity of apatite-biopolymer composites



DOI: https://doi.org/10.15407/hftp13.03.301

L. F. Sukhodub, L. B. Sukhodub, M. O. Kumeda

Abstract


The undamaged structure and functionality of the skeleton are a prerequisite for ensuring the quality of human life. The introduction of the latest treatment methods and prosthetics in traumatic surgery, oncology, cranial surgery, and dentistry form a demand for biomaterials with functionalized properties. The growth of new bone tissue is a cell-regulated process based on creating a specific bone morphology, which combines the organic matrix and its inorganic content. The inorganic component of human bones and teeth is calcium deficiency hydroxyapatite (cdHA), with a molar ratio of Ca/P ranging from 1.5 to 1.67. The combination of cdHA and natural polymers in the material allows the incorporation of proteins and growth factors into the polymer matrix. It promotes biocompatibility and the growth of new bone tissue. This review considers the critical role of the porosity parameter of biomaterials (BM) in their use for bone regeneration. Porosity is an essential characteristic of BM and guarantees the interaction of the material with cells in bone formation, promoting vascularization and the process of biosorption of synthetic graft when it is replaced by newly formed native bone. At the same time, the degree of porosity should correlate with mechanical stability to maintain the structural integrity of BM in the process of hard tissue regeneration. Processes involving cells and proteins during BM implantation with both high (70–80 %) and low (≤ 45 %) degrees of porosity are considered. Data on existing methods of obtaining BM in porous scaffolds are given. The specified degree of porosity is provided by chemical (cross-linking) and physical (sublimation) methods. The effects of pores of different sizes and shapes on bone formation and vascularization are considered. It is shown that porosity is an influential factor influencing the mechanical properties of scaffolds, in particular, the stiffness of BM - a parameter that affects the proliferation of osteoblasts by regulating cell adhesion in the scaffold structure. The influence of the biopolymer component (Sodium Alginate - AN) on the porosity and swelling of hybrid apatite-biopolymer (HA/AN) composites, in which nanometric needle crystallites represent HA, is analyzed in detail.


Keywords


porosity; bone tissue; Hydroxyapatite; biopolymers; biocomposites

Full Text:

PDF (Українська)

References


Zhang R., Ma P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 1999. 45(4): 285. https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<285::AID-JBM2>3.0.CO;2-2

Best S.M., Porter A.E., Thian E.S., Huang J. Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008. 28(7): 1319. https://doi.org/10.1016/j.jeurceramsoc.2007.12.001

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005. 26(27): 5474. https://doi.org/10.1016/j.biomaterials.2005.02.002

Woodard J.R., Hilldore A.J., Lan S.K., Park C.J., Morgan A.W., Eurell J.A.C., Clark S.G., Wheeler M.B., Jamison R.D., Wagoner Johnson A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007. 28(1): 45. https://doi.org/10.1016/j.biomaterials.2006.08.021

Woesz A., Rumpler M., Stampfl J., Varga F., Fratzl-Zelman N., Roschger P., Klaushofer K., Fratzl P. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater. Sci. Eng. C. 2005. 25(2): 181. https://doi.org/10.1016/j.msec.2005.01.014

Yang S., Leong K.-F., Du Z., Chua C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001. 7(6): 679. https://doi.org/10.1089/107632701753337645

Abbasi N., Hamlet S., Love R.M., Nguyen N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices. 2020. 5(1): 1. https://doi.org/10.1016/j.jsamd.2020.01.007

Ferreiro Balbuena O.B., Santos Paiva L.F., Ribeiro A.A., Monteiro M.M., Varella de Oliveira M., Pereira L.C. Sintering parameters study of a biphasic calcium phosphate bioceramic synthesized by alcoholic sol-gel technique. Ceram. Int. 2021. 47(23): 32979. https://doi.org/10.1016/j.ceramint.2021.08.197

Shum H.C., Bandyopadhyay A., Bose S., Weitz D.A. Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite. Chem. Mater. 2009. 21(22): 5548. https://doi.org/10.1021/cm9028935

Galván-Chacón V.P., Costa L., Barata D., Habibovic P. Droplet microfluidics as a tool for production of bioactive calcium phosphate microparticles with controllable physicochemical properties. Acta Biomater. 2021. 128: 486. https://doi.org/10.1016/j.actbio.2021.04.029

Patent US 10561683B2. De Groot-Barrere F., Van Miegem V., Yuan H., De Bruijn J. Method for producing an osteoinductive calcium phosphate and products thus obtained. 2021.

Iviglia G., Kargozar S., Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J. Funct. Biomater. 2019. 10(1): 3. https://doi.org/10.3390/jfb10010003

Cheng M., Wahafu T., Jiang G., Liu W., Qiao Y., Peng X., Cheng T., Zhang X., He G., Liu X. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci. Rep. 2016. 6(1): 24134. https://doi.org/10.1038/srep24134

Lim T.C., Chian K.S., Leong K.F. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J. Biomed. Mater. Res. Part A. 2010. 94(4): 1303. https://doi.org/10.1002/jbm.a.32747

Abbasi N., Abdal-hay A., Hamlet S., Graham E., Ivanovski S. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds. ACS Biomater. Sci. Eng. 2019. 5(7): 3448. https://doi.org/10.1021/acsbiomaterials.8b01456

di Luca A., Ostrowska B., Lorenzo-Moldero I., Lepedda A., Swieszkowski W., van Blitterswijk C., Moroni L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016. 6: 22898. https://doi.org/10.1038/srep22898

Sobral J.M., Caridade S.G., Sousa R.A., Mano J.F., Reis R.L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011. 7(3): 1009. https://doi.org/10.1016/j.actbio.2010.11.003

van Bael S., Chai Y.C., Truscello S., Moesen M., Kerckhofs G., van Oosterwyck H., Kruth J.-P., Schrooten J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012. 8(7): 2824. https://doi.org/10.1016/j.actbio.2012.04.001

Morgan E.F., Unnikrisnan G.U., Hussein A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018. 20(1): 119. https://doi.org/10.1146/annurev-bioeng-062117-121139

Sengers B.G., Please C.P., Taylor M., Oreffo R.O.C. Experimental-Computational Evaluation of Human Bone Marrow Stromal Cell Spreading on Trabecular Bone Structures. Ann. Biomed. Eng. 2009. 37(6): 1165. https://doi.org/10.1007/s10439-009-9676-3

Roosa S.M.M., Kemppainen J.M., Moffitt E.N., Krebsbach P.H., Hollister S.J. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. Part A. 2010. 92A(1): 359. https://doi.org/10.1002/jbm.a.32381

Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials. 2018. 8(11): 960. https://doi.org/10.3390/nano8110960

Wang Q., Wang Q., Wan C. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro. Anais da Academia Brasileira de Ciências. 2012. 84(1): 9. https://doi.org/10.1590/S0001-37652012005000003

Ma P.X., Choi J.-W. Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network. Tissue Eng. 2001. 7(1): 23. https://doi.org/10.1089/107632701300003269

Xu S., Liu J., Zhang L., Yang F., Tang P., Wu D. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J. Mater. Chem. B. 2017. 5(30): 6110. https://doi.org/10.1039/C7TB00790F

Dorozhkin S.V. Calcium orthophosphates in dentistry. J. Mater. Sci. Mater. Med. 2013. 24(6): 1335. https://doi.org/10.1007/s10856-013-4898-1

Xu M., Zhai D., Chang J., Wu C. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Acta Biomater. 2014. 10(1): 463. https://doi.org/10.1016/j.actbio.2013.09.011

Aparicio C., Pau Ginebra M. Biomineralization and Biomaterials, Fundamentals and Applications. (Elsevier, 2016).

Martynyuk O.O., Sukhodub L.F., Sukhodub L.B. Nanocomposite materials based on hydroxyapatite and sodium alginate: synthesis and characteristics. Biophysical Bulletin. 2015. 1(33): 48.

Wang L., Li Y., Li C. In situ processing and properties of nanostructured hydroxyapatite/alginate composite. J. Nanopart. Res. 2009. 11(3): 691. https://doi.org/10.1007/s11051-008-9431-y

Malkaj P., Pierri E., Dalas E. The crystallization of Hydroxyapatite in the presence of sodium alginate. J. Mater. Sci. Mater. Med. 2005. 16(8): 733. https://doi.org/10.1007/s10856-005-2610-9

Pramanik N., Mohapatra S., Bhargava P., Pramanik P. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications. Mater. Sci. Eng. C. 2009. 29(1): 228. https://doi.org/10.1016/j.msec.2008.06.013




DOI: https://doi.org/10.15407/hftp13.03.301

Copyright (©) 2022 L. F. Sukhodub, L. B. Sukhodub, M. O. Kumeda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.