Хімія, фізика та технологія поверхні, 2016, 7 (1), 97-106.

Вплив типу ПАР на електровидалення ортохлортолуолу з тонкодисперсних глинистих ґрунтів



DOI: https://doi.org/10.15407/hftp07.01.097

L. L. Lysenko, N. A. Mishchuk, O. F. Rynda, A. E. Shen

Анотація


Досліджено закономірності електроосмотичної течії і розподілу залишкового ортохлортолуолу в залежності від типу ПАР, яка солюбілізує гідрофобне органічне забруднення, при проведенні електрокінетичної детоксикації тонкодисперсного глинистого ґрунту. Показано, що найбільша ефективність очищення досягається у випадку введення неіоногенних ПАР ароматичної будови за умови забезпечення максимально можливого значення електрокінетичного потенціалу частинок ґрунту за рахунок регулювання рН порового

Ключові слова


гідрофобні органічні сполуки; поверхнево-активні речовини; електрокінетична очистка; електроосмос

Повний текст:

PDF (Русский)

Посилання


1. Paria S. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 2008. 138(1): 24. https://doi.org/10.1016/j.cis.2007.11.001

2. Svab M., Kubal M., Mullerova M., Raschman R. Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology. J. Hazard. Mater. 2009. 163(1): 410. https://doi.org/10.1016/j.jhazmat.2008.06.116

3. López-Vizcaíno R., Sáez C., Ca-izares P., Rodrigo M.A. The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep. Purif. Technol. 2012. 88: 46. https://doi.org/10.1016/j.seppur.2011.11.038

4. Mitton F.M., Miglioranza K.S.B., Gonzalez M., Shimabukuro V.M., Monserrat J.M. Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecol. Eng. 2014. 71: 501. https://doi.org/10.1016/j.ecoleng.2014.07.069

5. Romantschuk M., Sarand I., Petänen T., Peltola R., Jonsson-Vihanne M., Koivula T., Yrjälä K., Haahtela K. Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ. Pollut. 2000. 107(2): 179. https://doi.org/10.1016/S0269-7491(99)00136-0

6. Albergaria J.T., Alvim-Ferraz M., Delerue-Matos C. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. J. Environ. Manage. 2012. 104: 195. https://doi.org/10.1016/j.jenvman.2012.03.033

7. Falciglia P.P., Giustra M.G., Vagliasindi F.G.A. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. J. Hazard. Mater. 2011. 185(1): 392. https://doi.org/10.1016/j.jhazmat.2010.09.046

8. Saichek R.E., Reddy K.R. Electrokinetically enhanced remediation of hydrophobic organic compounds in soil: A review. Critical Reviews in Environmental Science and Technology. 2005. 35(2): 115. https://doi.org/10.1080/10643380590900237

9. Gomes H.I., Dias-Ferreira C., Ribeiro A.B. Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere. 2012. 87(10): 1077. https://doi.org/10.1016/j.chemosphere.2012.02.037

10. Acar Y.B., Alshawabkeh A.N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993. 27(13): 2638. https://doi.org/10.1021/es00049a002

11. Tikhomolova K.P. Electroosmosis. (Leningrad: Khimiya, 1989). [in Russian].

12. Saichek R.E., Reddy K.R. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere. 2003. 51(4): 273. https://doi.org/10.1016/S0045-6535(02)00849-4

13. Vane L.M., Zang G.M. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes. J. Hazard. Mater. 1997. 55(1–3): 1. https://doi.org/10.1016/S0304-3894(97)00010-1

14. Shen Z, Chen X, Jia J, Qu L, Wang W. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environ. Pollut. 2007. 150(2): 193. https://doi.org/10.1016/j.envpol.2007.02.004

15. Lysenko L.L., Shen A.E., Rynda E.F., Mishchuk N.A. Detoxification of clay soils contaminated with chlorobenzene by electrokinetic method. Ukr. Chem. J. 2014. 80(1–2):107. [in Russian].

16. Patent 101879 Ukraine, C2 IPC B09C 1/00. Lysenko L.L., Mishchuk N.A., Rynda E.F., Shen A.E. The method of decontamination of clay soil from uncharged hydrophobic organic compounds. 2013.

17. Lysenko L.L., Mishchuk N.A., Rynda E.F. Intensification of the electroosmotic flow of aqueous solutions in concentrated disperse systems. J. Water Chem. Tech. 2011. 33(3): 140. https://doi.org/10.3103/S1063455X11030027

18. Lysenko L.L., Mishchuk N.A. Electrohydrodynamic method of pH regulation at soil decontamination. Colloids Surf., A. 2009. 333(1–3): 59. https://doi.org/10.1016/j.colsurfa.2008.09.026

19. Yeung A.T., Gu Y.-Y. A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 2011. 195: 11. https://doi.org/10.1016/j.jhazmat.2011.08.047

20. Hanna K., Chiron S., Oturan M.A. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 2005. 39(12): 2763. https://doi.org/10.1016/j.watres.2005.04.057

21. Yuan S.-H., Wan J.-Z., Lu X.-H. Electrokinetic movement of multiple chlorobenzenes in contaminated soils in the presence of β-cyclodextrin. J. Environ. Sci. 2007. 19(8): 968. https://doi.org/10.1016/S1001-0742(07)60159-4

22. Yang J.-W., Lee Y.-J., Park J.-Y., Kim S.-J., Lee J.-Y. Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Eng. Geol. 2005. 77(3–4): 243. https://doi.org/10.1016/j.enggeo.2004.07.015

23. Chang J.-H., Qiang Z., Huang C.-P., Ellis A.V. Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants – Triton X-100 and rhamnolipid. Colloids Surf., A. 2009. 348: 157. https://doi.org/10.1016/j.colsurfa.2009.07.005

24. Yuan S., Tian M., Lu X. Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and β-cyclodextrin. J. Hazard. Mater. 2006. 137(2): 1218. https://doi.org/10.1016/j.jhazmat.2006.04.014

25. Li A., Cheung K.A., Reddy K.R. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene. J. Environ. Eng. 2000. 126(6): 527. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:6(527)

26. Maturi K., Reddy K.R. Cosolvent-enhanced desorption and transport of heavy metals and organic contaminants in soils during electrokinetic remediation. Water, Air, Soil Pollut. 2008. 189: 199. https://doi.org/10.1007/s11270-007-9568-9

27. Frolov Yu.G. Course of colloid chemistry. Surface phenomena and disperse systems. (Moscow: Khimia, 1982). [in Russian].

28. Karagunduz A., Gezer A., Karasuloglu G. Surfactant enhanced electrokinetic remediation of DDT from soils. Sci. Total Environ. 2007. 385(1–3): 1. https://doi.org/10.1016/j.scitotenv.2007.07.010

29. Ranjan R.S., Qian Y., Krishnapillai M. Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [CTAB] on the hydrocarbon removal and retention from contaminated soils. Environ. Technol. 2006. 27(7): 767. https://doi.org/10.1080/09593332708618686

30. Abramson A.A., Zaichenko L.P., Feingold S.I. Surfactants. Synthesis, analysis, properties and application. (Leningrad: Khimia, 1988). [in Russian].

31. Zhang G., Hu H., Sun W., Ni J. Sorption of Triton X-100 on soil organic matter fractions: Kinetics and isotherms. J. Environ. Sci. 2009. 21(6): 795. https://doi.org/10.1016/S1001-0742(08)62343-8




DOI: https://doi.org/10.15407/hftp07.01.097

Copyright (©) 2016 L. L. Lysenko, N. A. Mishchuk, O. F. Rynda, A. E. Shen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.