Хімія, фізика та технологія поверхні, 2016, 7 (3), 309-321.

Властивості Zn-Мо-оксидної системи, синтезованої шляхом механохімічної обробки



DOI: https://doi.org/10.15407/hftp07.03.309

O. V. Sachuk, V. O. Zazhygalov, L. S. Kuznetsova, M. M. Tsyba

Анотація


Методами РФА, ІЧ-спектроскопії, адсорбції-десорбції азоту, ДТА-ТГ, СЕМ досліджено властивості зразків, одержаних у результаті механохімічної обробки (МХО) оксидної системи ZnO -MoO( Zn:Mo= 15:85, 25:75, 50:50, 75:25) протягом 2, 4 та 8 годин на повітрі. Показано, що механохімічна обробка цих зразків змінює кристалічну структуру оксидів, морфологію їх поверхні, порувату структуру та розмір частинок (до 12–16 нм), що стимулює утворення нових сполук безпосередньо в процесі МХО (механохімічний синтез). Встановлено якісне формування молібдату цинку при МХО стехіометричної композиції, який відрізняється від цієї сполуки, одержаної традиційними методами, наявністю нанорозмірних частинок, вищим значенням питомої поверхні та наявністю біпоруватої (мікро- та мезопори) структури.

Ключові слова


механохімічна обробка; цинк-молібденова композиція; молібдат цинку

Повний текст:

PDF

Посилання


1. Golodets G.I. Heterogeneous catalytic reactions involving molecular oxygen. (Amsterdam: Elsevier Science, 1983).

2. Hodnett B.K. Heterogeneous catalytic oxidation: Fundamental and technological aspects of the selective and total oxidation of organic compounds. (N.-Y.: Wiley, 2000).

3. Armor J.N. New catalytic technology commercialized in the USA during the 1990s. Appl. Catal. A. 2001. 222(2):407.  https://doi.org/10.1016/S0926-860X(01)00846-8 

4. Centi G., Cavani F., Trifiro F. Selective oxidation by heterogeneous catalysis. (N.Y.: Kluwer Acad., 2001). https://doi.org/10.1007/978-1-4615-4175-2  

5. Horvath I.T. Encyclopedia of Catalysis. V. 6. (N.Y.: Wiley and Sons, 2003).

6. Ertl G., Knozinger H., Schuth F., Wietkamp J. Handbook of Heterogeneous Catalysis. V. 8. (N.Y.: Wiley-VCH, 2008). https://doi.org/10.1002/9783527610044  

7. Kołodziejczak-Radzimska A., Jesionowski T. Zinc Oxide From Synthesis to Application: A Review. Materials. 2014. 7: 2833. https://doi.org/10.3390/ma7042833    

8. Georgekutty R., Seery M.K., Pillai S.C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties and mechanism. J. Phys. Chem. C. 2008. 112: 13563.  https://doi.org/10.1021/jp802729a 

9. Papp J., Soled S., Dwight K., Wold A. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2 and MoO3/TiO2 photocatalysts. Chem. Mater. 1994. 6(4): 496.  https://doi.org/10.1021/cm00040a026 

10. Temperoni C., Cignini P., Icovi M., Panero S. Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Part III. Cells based on Mo18O52. J. Electroanal. Chem.1980. 108(2): 169.   https://doi.org/10.1016/S0022-0728(80)80465-7  

11. Girard V., Chiche D., Baudot A., Bazer-Bachi D., Clémençon I., Moreaua F., Geantet C. Innovative low temperature regenerable zinc based mixed oxide sorbents for synthesis gas desulfurization. Fuel. 2015. 140: 453.   https://doi.org/10.1016/j.fuel.2014.09.090  

12. Nakamura K., Eda K., Hasegawa S., Sotani N. Reactivity for isomerization of 1-butene on the mixed MoO3-ZnO oxide catalyst. Appl. Catal. A. 1999. 178: 167.  https://doi.org/10.1016/S0926-860X(98)00291-9 

13. Cavalcante L.S., Sczancoski J.C., Li M.S., Longoa E., Varela J.A. β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids Surf. A. 2012. 396: 346.   https://doi.org/10.1016/j.colsurfa.2011.12.021  

14. Cavalcante L.S., Moraes E., Almeida M.A.P., Dalmaschio C.J., Batista N.C., Varela J.A., Longo E., Siu Li M., Andrés J., Beltrán A. A combained theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron. 2013. 54: 13.   https://doi.org/10.1016/j.poly.2013.02.006  

15. Ivleva L. I., Voronina I. S., Berezovskaya L.Yu., Lykov P. A., Osiko V.V., Iskhakova L.D. Growth and Properties of ZnMoO4 Single Crystals. Crystallogr. Rep. 2008. 53(6): 1087.   https://doi.org/10.1134/S1063774508060266  

16. Zhang G., Yu S., Yang Y., Jiang W, Zhang S., Huang B. Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4×0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method. J. Crystal Growth. 2010. 312: 1866.   https://doi.org/10.1016/j.jcrysgro.2010.02.022  

17. Peng C., Gao L., Yang S., Sun J. A general precipitation strategy for large-scale synthesis of molybdate nanostructures. Chem. Commun. 2008. 43: 5601.  https://doi.org/10.1039/b812033a 

18. Klissurski D., Mancheva M., Iordanova R., Kunev B. Synthesis of Cr2(MoO4)3 from mechanically activated precursors. Chemistry for sustainable development. 2005. 13: 229.

19. Klissurski D., Radev D., Iordanova R., Milanova M. Mechanochemically assisted synthesis of Bi2Mo3O12 catalysts. Chemistry for sustainable development. 2005. 13: 225.

20. Klissurski D., Mancheva M., Iordanova R., Tyuliev G., Kunev B. Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 2006. 422: 53.  https://doi.org/10.1016/j.jallcom.2005.11.073  

21. Molchanov V.V., Buyanov R.A., Tsybulya S.V., Kryukova G.N., Shmakov A.N., Boronin A.I., Volodin A.M. Effect of Mechanochemical Activation on the Catalytic Properties of Zinc Oxide. Kinet. Catal. 2004. 45(5): 684.   https://doi.org/10.1023/B:KICA.0000044980.30041.4f 

22. Takahashi H., Tsutsumi K. Mechanochemical effects on zinc oxide powder crystals. J. Dechema-Monographien. 1967. 57: 475.

23. Poluboyarov V.A., Chumachenko N.N., Avvakumov E.G. A study of molybdenum oxide and vanadium-molybdenum compounds subjected to mechanical activation by ESR and XRD methods. Research report. 1989. 6: 130.

24. Mestl G., Herzog B., Schlögl R., Knözinger H. Mechanically activated MoO3. 1. Particle size, crystallinity, and morphology. Langmuir. 1995. 11(8): 3027.  https://doi.org/10.1021/la00008a030

25. Mestl G., Verbrunggen N.F.D., Knözinger H. Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir. 1995. 11(8): 3035.   https://doi.org/10.1021/la00008a031 

26. Mestl G., Srinivasan T.K.K., Knözinger H. Mechanically activated MoO3. 3. Characterization by vibration spectroscopy. Langmuir. 1995. 11(10): 3795. https://doi.org/10.1021/la00010a033 

27. Poluboyarov V.A., Kisilevich S.N., Kirichenko O.A., Pauli I.A., Korotaeva Z.A., Dektarev S.P., Ancharov A.I. Mechanical treatment and physicochemical properties of MoO3. Inorganic materials.1998. 34(11):1365

28. Bogutskaya L.V., Khalameida S.V., Zazhigalov V.A., Kharlamov A.I., Lyashenko L.V., Byl'O.G. Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor. Exp. Chem. 1999. 35(4): 242.   https://doi.org/10.1007/BF02511524 

29. Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Osobliwiści mechanochemicznej aktywacji MoO3 w odniesieniu do katalytycznego procesu przetwarzania bioetanolu. Przemysl Chem. 2011. 90(7): 1404.  

30. Zazhigalov V.A. Effect of mechanochemical treatment on the kinetic properties of V, Mo, Ti – containing oxide systems. Theor. Exp. Chem. 2013. 49(3): 178.  https://doi.org/10.1007/s11237-013-9312-z  

31. Heinicke G. Tribochemistry. (Academie-Verlag, Berlin, 1984).

32. Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochemiczna aktywacja katalizatorów wanadowych. (Kraków: Politechnika Krakowska, 2014).

33. Chiang T.H., Yeh H.C. The synthesis of α-MoO3 by ethylene glycol. Materials. 2013. 6: 4609.  https://doi.org/10.3390/ma6104609 

34. Stoyanova A., Iordanova R., Mancheva M., Dimitriev Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectronics Adv. Mater. 2009. 11(8): 1127.

35. Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Izvestiya Academii Nauk SSSR. 1990. 39(10): 2029.  https://doi.org/10.1007/bf01557732

36. Avvakumov E.G., Senna M., Kosova N.V. Soft mechanochemical synthesis: A basis for new chemical technologies. (Dordrecht: Kluwer Acad. Publ., 2001).

37. Balaż P. Mechanochemistry in nanoscience and minerals engineering. (Berlin: Springer, 2008).

38. Seguin L., Figlarz M., Cavagnat R., Lassègues J.-C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·H2O molybdenum trioxide hydrares. Spectrochim. Acta Part A. 1995. 51(8): 1323.   https://doi.org/10.1016/0584-8539(94)00247-9  

39. Kumar V., Lee P.S. Redox active polyaniline-h-MoO3 hollow nanorods for improved pseudocapacitive performance. J. Phys. Chem. C. 2015. 119(17): 9041. https://doi.org/10.1021/acs.jpcc.5b00153  

40. Wean T.Y., Ramli I., Hin T-Y.Y. Effect of calcination temperature on the physicochemical properties of MoV oxides prepared via reflux method. Malaysian J. Anal. Sci. 2007. 11(1): 139.

41. Viswanatha R., Venkatesh T.G., Vidyasagar C.C., Arthoba Nayaka Y. Preparation and characterization of ZnO and Mg-ZnO nanoparticles. Archives of applied science research. 2012. 4(1): 480.

42. Irmawati R., Shafizah M. The Production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int. J. Bas. Appl. Sci. 2009. 9(9): 34.

43. Talam S., Karumuri S. R., Gunnam N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Scholarly Res. Network Volume. 2012. Article ID 372505, 6 pages.

44. Farag K., Hanafi Z.M., Dawy M., Abd E.l., Aziz E.M. Characterization of ZnO nanopowders synthesized by the direct precipitation method. Canad. J. Pure Appl. Sci. 2010.4(3): 1303.  

45. Gregg S.J., Sing K.S.W. Adsorption surface area and porosity. (Academic Press, Inc., 1982).Yin J.

46. Gao F., Wei C., Lu Q. Water amount dependence on morphologies and properties of ZnO nanostructures in double-solvent system. Scientific Reports. 2014. 4(3736): 1.https://doi.org/10.1038/srep03736




DOI: https://doi.org/10.15407/hftp07.03.309

Copyright (©) 2016 O. V. Sachuk, V. O. Zazhygalov, L. S. Kuznetsova, M. M. Tsyba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.