Хімія, фізика та технологія поверхні, 2016, 7 (4), 413-420.

Синтез, морфологія та термічні властивості POSS-вмісних поліуретанових нанокомпозитів



DOI: https://doi.org/10.15407/hftp07.04.413

L. V. Karabanova, L. A. Honcharova, V. I. Sapsay, D. O. Klymchuk

Анотація


Синтезована серія нанокомпозитів на основі поліуретанової матриці (ПУ) із використанням 1,2-пропандіолізобутилполіедрального олігомерного сілсесквіоксану (POSS) як функціонального нанонаповнювача. Досліджено вплив вмісту POSS на структуру та властивості створених нанокомпозитів. Полімерна матриця (ПУ сітка) синтезована на основі адукту триметилолпропану (ТМП), толуїлен-2,4-діізоцианату (ТДІ) та олігоетергліколю з Mw = 5000 г/моль-1. Модельна система на основі адукту ТМП з ТДІ була використана для дослідження можливості вбудовування POSS в поліуретанову сітку із застосуванням FTIR спектроскопії. Структура та морфологія POSS-вмісних нанокомпозитів досліджена методами FTIR-ATR спектроскопії та SEM. Термічні властивості досліджені методами ДСК та ТГА. Показано, що введення POSS в ПУ матрицю призводить до підвищення термічної стабільності створених нанокомпозитів.

Ключові слова


поліуретан; поліедральний олігомерний сілсесквіоксан; нанокомпозит; морфологія; Фур’є інфрачервона спектроскопія; диференційна скануюча калориметрія; термогравіметричний аналіз

Повний текст:

PDF (English)

Посилання


1. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003. 28(11): 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002 

2. Shaffer M.S.P., Sandler J.K.W. Processing and properties of nanocomposites. In: Carbon Nanotube/Nanofibre Polymer Composites. (Singapore: World Scientific, 2006).

3. Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv. 2013. 3: 14560. https://doi.org/10.1039/c3ra40295a 

4. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. 2008. B 46(16): 1696.

5. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006. 39(16): 5194. https://doi.org/10.1021/ma060733p 

6. Wolinska-Grabczyk A., Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep. Purif. Technol. 2007. 57(3): 413. https://doi.org/10.1016/j.seppur.2006.03.025 

7. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polymer Journal. 2007. 29(3): 177. [in Russian].

8. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci. 2013. 291(3): 573. https://doi.org/10.1007/s00396-012-2745-4 

9. Karabanova L.V., Whitby R.L., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Compos. Sci. Technol. 2012. 72(8): 865. https://doi.org/10.1016/j.compscitech.2012.02.008 

10. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J. Membr. Sci. 2009. 342(1–2): 291. https://doi.org/10.1016/j.memsci.2009.07.002 

11. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polymer Journal. 2009. 31(2): 137. [in Ukrainian].

12. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym. 2012. 72(4): 227. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001 

13. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab. 2014. 104: 50. https://doi.org/10.1016/j.polymdegradstab.2014.03.025 

14. Wei K, Wang L, Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem. 2013. 4:1491. https://doi.org/10.1039/C2PY20930F 

15. Bourbigot S., Turf T., Bellayer S., Duquesne S. (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab. 2009. 94:1230. https://doi.org/10.1016/j.polymdegradstab.2009.04.016 

16. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci. 2016. 51(5): 2443. https://doi.org/10.1007/s10853-015-9557-0 

17. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer. 2009. 50(24): 5749. https://doi.org/10.1016/j.polymer.2009.05.037 

18. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater. Chem. Phys. 2009. 117(1): 91. https://doi.org/10.1016/j.matchemphys.2009.05.006 

19. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P. T. Thermally modulated nanostructure of poly(ε-caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer. 2013. 54(13): 3350. https://doi.org/10.1016/j.polymer.2013.04.015 

20. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int. 2004. 53(12): 2051. https://doi.org/10.1002/pi.1627 

21. Wamke A., Dopierała R., Prochaska K., Maciejewski H., Biadasz A., Dudkowiak A. Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Colloids Surf. A. 2015. 464: 110. https://doi.org/10.1016/j.colsurfa.2014.10.022 

22. Jerman I., Kozelj M., Orel B. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Solar Energy Materials & Solar Cells. 2010. 94(2): 232; https://doi.org/10.1016/j.solmat.2009.09.008 

23. Jerman I., Mihelcic M., Verhovsek D., Kovac J., Orel B. Polyhedral oligomeric silsesquioxane trisilanols as pigment surface modifiers for fluoropolymer based Thickness Sensitive Spectrally Selective (TSSS) paint coatings. Solar Energy Materials & Solar Cells. 2011. 95(2): 423. https://doi.org/10.1016/j.solmat.2010.08.005 

24. Kraus-Ophir S., Jerman I., Orel B., Mandler D. Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films. Soft Matter. 2011. 7: 8862. https://doi.org/10.1039/c1sm05443k 

25. Dittmar U., Hendan B.J., Florke U., Marsmann H.C. Funktionalisierte Octa-(propylsilsesquioxane) (3-XC3H6)8(Si8O12) Modellverbindungen für oberflächenmodifizierte Kieselgele. J. Organomet. Chem. 1995. 489(1–2): 185.https://doi.org/10.1016/0022-328X(94)05100-P 

26. Bärtsch M., Bornhauser P., Calzaferri G., Imhof R., H8Si8O12: A model for the vibrational structure of zeolite A. J. Phys.Chem. 1994. 98(11): 2817.https://doi.org/10.1021/j100062a016 

27. Xue M., Zhang X., Wu Z., Wang H., Ding X., Tian X. Preparation and flame retardancy of polyurethane/POSS nanocomposites. Chin. J. Chem. Phys. 2013. 26(4): 445.https://doi.org/10.1063/1674-0068/26/04/445-450 

28. Maoz R., Sagiv, Degenhardt J.D., Mohwald H., Quint P. Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques. Supramol. Sci. 1995. 2(1): 9.https://doi.org/10.1016/0968-5677(96)85635-5 

29. Bellamy L.J. The infrared spectra of complex molecules. V. 2. Advances in infrared group frequencies. (London: Methuen, 1980).

30. Moon J.H., Seo J.S., Xu.Y., Yang S. Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 2009. 19(27): 4687.https://doi.org/10.1039/b901226e 

31. Smetankina N.P., Angelova A.V., Lukas S.D. Polyurethane coatings based on polyoxypropylene glycols. Synthesis and physical chemistry of polyurethanes. 1967. 5: 49. [in Russian].

32. Zhang S., Zou Q., Wu L. Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol. Mater. Eng. 2006. 291(7): 895.https://doi.org/10.1002/mame.200600144




DOI: https://doi.org/10.15407/hftp07.04.413

Copyright (©) 2016 L. V. Karabanova, L. A. Honcharova, V. I. Sapsay, D. O. Klymchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.