Хімія, фізика та технологія поверхні, 2017, 8 (1), 56-64.

Синтез, оптичні та фотокаталітичні властивості мезопористих залізовмісних плівок діоксиду титану



DOI: https://doi.org/10.15407/hftp08.01.056

N. A. Chorna, O. P. Linnik, N. P. Smirnova

Анотація


Мезопористі плівки модифікованого діоксиду титану з різним вмістом (1–50 %) йонів заліза синтезовано золь-гель методом. Збільшення вмісту йонів заліза в плівках ТіО2 призводить до звуження ширини забороненої зони, розрахованої з оптичних спектрів. Встановлено, що під дією видимого світла активність синтезованих зразків в реакції деструкції тетрацикліну гідрохлориду зростала для плівок з 25 та 50 % вмістом допанта більш ніж в два та три рази, відповідно, у порівнянні з недопованим ТіО2. Спостерігається підвищення адсорбційної здатності плівок зі збільшенням вмісту заліза в структурі ТіО2.

Ключові слова


діоксид титану; золь-гель метод; оптичні властивості; фотокаталітична активність

Повний текст:

PDF (English)

Посилання


1. Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003. 48(5–8): 53. https://doi.org/10.1016/S0167-5729(02)00100-0

2. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1. https://doi.org/10.1016/S1389-5567(00)00002-2

3. Yamashita H., Harada M., Misaka J., Takeuchi M., Neppolian B., Anpo M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today. 2003. 84(3–4): 191. https://doi.org/10.1016/S0920-5861(03)00273-6

4. Naeem K., Ouyang F. Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Physica B. 2010. 405(1): 221. https://doi.org/10.1016/j.physb.2009.08.060

5. Zhang Ya., Li Q. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 2013. 16: 16. https://doi.org/10.1016/j.solidstatesciences.2012.11.012

6. Ganesh D.I., Kumar P.P., Gupta A.K., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G. Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Process. Appl. Ceram. 2012. 6(1): 21–36. https://doi.org/10.2298/PAC1201021G

7. Lezner M., Grabowska E., Zaleska A. Preparation and photocatalytic activity of iron modified titanium dioxide photocatalyst. Physicochemical Problems of Mineral Processing. 2012. 48(1): 193.

8. Sooda S., Umarb A., Mehtaa S.K., Kansald S.K. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J. Colloid Interface Sci. 2015. 450: 213. https://doi.org/10.1016/j.jcis.2015.03.018

9. Linnik O., Kisch H. On the mechanism of nitrogen fixation at nanostructured iron titanate films. Photochem. Photobiol. Sci. 2006. 5(10): 938. https://doi.org/10.1039/b608396j

10. Garza-Arévalo J.I., García-Montes I., Reyes M.H., Guzmán-Mar J.L., Rodríguez-González V., Reyes L.H. Fe doped TiO2 photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater. Mater. Res. Bull. 2016. 73: 145. https://doi.org/10.1016/j.materresbull.2015.08.034

11. Lin Lu, Wang H., Luo H., Xu P. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J. Photochem. Photobiol., A. 2015 307–308: 88.

12. Abidov A., Allabergenov B., Lee J., Jeon H., Jeong S., Kim S. X-ray photoelectron spectroscopy characterization of Fe doped TiO2. International Journal of Materials, Mechanics and Manufacturing. 2013. 1(3): 294. https://doi.org/10.7763/IJMMM.2013.V1.63

13. Bapna K., Phase D.M., Choudhary R.J. Study of valence band structure of Fe doped anatase TiO2 thin films. J. Appl. Phys. 2011. 110(4): 043910. https://doi.org/10.1063/1.3624775

14. Zhang Y., Shen Y., Gu F., Wu M., Xie Y., Zhang J. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Appl. Surf. Sci. 2009. 256(1): 85. https://doi.org/10.1016/j.apsusc.2009.07.074

15. Wen L., Liu B., Zhao X., Nakata K., Murakami T., Fujishima A. Synthesis, characterization, and photocatalysis of Fe-doped TiO2. A combined experimental and theoretical study. Int. J. Photoenergy. 2012. 2012: ID 368750.

16. Naceur J.B., Mechiakh R., Bousbih F., Chtourou R. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating. Appl. Surf. Sci. 2011. 257(24): 10699. https://doi.org/10.1016/j.apsusc.2011.07.082

17. Wang M.C., Lin H.J., Yang T.S. Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol-gel spin coating. J. Alloys Compd. 2009. 473(1–2) 394. https://doi.org/10.1016/j.jallcom.2008.05.105

18. Yalcin Y., Kilic M., Cinar Z. Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B. 2010. 99(3–4): 469. https://doi.org/10.1016/j.apcatb.2010.05.013

19. Luu C.L., Nguyen Q.T., Ho S.T. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2010. 1(1): 15008.

20. Wang J., Liu Z., Cai R. A new role for Fe3+ in TiO2 hydrosol: accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 2008. 42(15): 5759. https://doi.org/10.1021/es800616b

21. Blatt F.J. Physics of Electronic Conduction in Solids. Band gap. (McGraw-Hill, 1968).

22. Vasylevskii A., Konoplev H., Panov M. Optical and physical investigation methods: methodical instructions to laboratory works on disciplines "Optical and physical investigation methods". "Optical and physical investigation methods of materials and thin film structures". (St. Petersburg: State Electrotechnical University, 2011). P. 56.

23. Rusina O., Linnik O., Eremenko A., Kisch H. Nitrogen photofixation on nanostructured iron titanate films. Chemistry. 2003. 9(2): 561. https://doi.org/10.1002/chem.200390059

24. Hashimoto K., Irie H., Fujishima A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005. 44(1): 8269. https://doi.org/10.1143/JJAP.44.8269

25. Katoh R., Furube A., Yamanaka K., Morikawa T. Charge separation and trapping in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2010. 1(22): 3261. https://doi.org/10.1021/jz1011548

26. Hu X., An T., Zhang M., Sheng G., Fu J. Preparation and photocatalytic activities of Fe+3 doped nanometer TiO2 composites. Res. J. Chem. Environ. 2007. 11(4): 13.




DOI: https://doi.org/10.15407/hftp08.01.056

Copyright (©) 2017 N. A. Chorna, O. P. Linnik, N. P. Smirnova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.