Вплив мікроструктури модифікованого діатоміту на його адсорбційні властивості
DOI: https://doi.org/10.15407/hftp08.01.065
Анотація
Ключові слова
Посилання
1. Tewari A. and Dubey A. Defluoridation of drinking water: efficacy and need. J. Chem. Pharm. Res. 2009. 1(1): 31.
2. Mahramanlioglu M., Kizilcikli I., Bicer I.O. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J. Fluorine Chem. 2002. 115(1): 41. https://doi.org/10.1016/S0022-1139(02)00003-9
3. Fan X., Parker D.J., Smith M.D. Adsorption kinetics of fluoride on low cost materials. Water Res. 2003. 37(20): 4929. https://doi.org/10.1016/j.watres.2003.08.014
4. Zhang Y., Wang D., Liu B., Gao X., Xu W., Liang P., Xu Y. Adsorption of fluoride from aqueous solution using low-cost bentonite/chitosan beads. American Journal of Analytical Chemistry. 2013. 4(7): 48. https://doi.org/10.4236/ajac.2013.47A007
5. Zhang J., Chen N., Tang Z., Yu Y., Hu Q., Feng C. Adsorption of fluoride from aqueous solutions onto Fe-impregnated chitosan and mechamism study. Phys. Chem. Chem. Phys. 2015. 17(18): 12041. https://doi.org/10.1039/C5CP00817D
6. Ramos R.L., Turrubiartes J.O., Castillo M.A.S. Adsorption of fluoride from aqueous solution on aluminium-impregnated carbon. Carbon. 1999. 37(4): 609. https://doi.org/10.1016/S0008-6223(98)00231-0
7. Tripathy S.S., Raichur A.M. Abatement of fluoride from water using manganese dioxide-coated activated alumina. J. Hazard. Mater. 2008. 153(3): 1043.
8. Zelentsov V.I., Datsko T.Ya., Dvornikova E.E. Fluorine Adsorption by aluminum oxihydrates subjected to thermal treatment. Surf. Eng. Appl. Electrochem. 2008. 44(1): 64. https://doi.org/10.3103/S1068375508010134
9. Zelentsov V., Datsko T. Active pore materials based on sludge of Cr-Ni alloy electrochemical machining. Moldavian J. Phys. Sci. 2006. 5(2): 162.
10. Zelentsov V., Datsko T., Dvornikova E. Studiul aplicabilitatii diatomitului modificat pentru inlaturarea ionilor de fluor din apele naturale. In: Mediul si Industria, Proc. Int. Symp. (2005, Romania, Bucharest). 1: 213.
11. Datsko T.Ya., Zelentsov V.I., Dvornikova E.E. Physicochemical and adsorption structural properties of diatomite modified with aluminum compounds. Surf. Eng. Appl. Electrochem. 2011. 47(6): 530. https://doi.org/10.3103/S1068375511060081
12. Datsko T.Y., Zelentsov V.I. Fluorine sorption by aluminosilicate-modified diatomite from highly concentrated fluorine solutions: 1. Adsorption equilibrium. Surf. Eng. Appl. Electrochem. 2016. 52(3): 300. https://doi.org/10.3103/S1068375516030042
13. Sposito G. The Chemistry of Soils. Second Edition, 7.3. Surface. Charge (Oxford: University Press, 2008).
14. Jara A. A., Goldberg S., Mora M.L. Studies of the surface charge of amorphous aluminosilicates using surface complexation models. J. Colloid Interface Sci. 2005. 292(1): 160. https://doi.org/10.1016/j.jcis.2005.05.083
15. Yuan P., Wu D.Q., He H.P., Lin Z.Y. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Appl. Surf. Sci. 2004. 227(1–4): 30. https://doi.org/10.1016/j.apsusc.2003.10.031
16. Inoue K., Satoh C. Electric charge and surface characteristics of hydroxyaluminosilicate- and hydroxyaluminum-vermiculite complexes. Clays Clay Miner. 1992. 40(3): 314. https://doi.org/10.1346/CCMN.1992.0400310
17. Tombacz E. pH-dependent surface charging of metal oxides. Chem. Eng. 2009. 53(2):77. https://doi.org/10.3311/pp.ch.2009-2.08
18. James R.O., Parks G.A. Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. Surf. Colloid Sci. 1982. 12: 119. https://doi.org/10.1007/978-1-4613-3204-6_2
19. Reyes Bahena J.L., Robledo C.A., Lopez V.A, Herrera U.R. Fluoride adsorption onto γ-Al2O3 and its effect on the zeta potential at the alumina-aqueous electrolyte interface. Sep. Sci. Technol. 2002. 37(8): 1973. https://doi.org/10.1081/SS-120003055
20. Gago C., Romar A., Fernandez-Marcos M. L., Alvarez E. Fluoride sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain). Environmental Earth Sciences. 2014. 72(10): 4105. https://doi.org/10.1007/s12665-014-3304-8
21. Takimoto K., Fujita A., Tsuda, S. Adsorption of phosphate on synthetic silica-alumina possessing Lewis-acid sites. Bull Chem. Soc. Jpn. 1977. 50(9): 2479. https://doi.org/10.1246/bcsj.50.2479
22. Rajan S.S.S., Perrott K.W. Phosphate adsorption by synthetic amorphous aluminosilicates. Eur. J. Soil. Sci. 1975. 26(3): 257. https://doi.org/10.1111/j.1365-2389.1975.tb01950.x
23. Pfleiderer P., Horbach J., Binder K. Structure and transport properties of amorphous aluminium silicates: computer simulation studies. Chem. Geol. 2005. 229(1–3): 1.
24. Kelsey K., Stebbins J.F., Mosenfelder J.L., Asimow P.D. Simultaneous aluminum, silicon, and sodium coordination changes in 6 GPa sodium aluminosilicate glass. Am. Mineral. 2009. 94(8–9): 1205. https://doi.org/10.2138/am.2009.3177
25. Tsomaia N., Brantley S.L., Hamilton J.P., Pantano C.G., Mueller K.T. NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal. Am. Mineral. 2003. 88(1): 54. https://doi.org/10.2138/am-2003-0107
26. Okazaki M., Kimiwada K., Katsumata H. Adsorption of ions on synthetic amorphous aluminosilicates with different SiO2/A12O3 molar ratios and coordination numbers of aluminum. Soil. Sci. Plant Nutr. 1989. 35(1): 109. https://doi.org/10.1080/00380768.1989.10434742
27. Valla M., Rossini A.J., Caillot M., Chizallet C., Raybaud P., Digne M., Chaumonnot A., Lesage A., Emsley L., van Bokhoven J.A., Coperet Ch. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface- enhanced NMR spectroscopy and first-principles calculations. J. Am. Chem. Soc. 2015. 137(33): 10710. https://doi.org/10.1021/jacs.5b06134
DOI: https://doi.org/10.15407/hftp08.01.065
Copyright (©) 2017 T. Ia. Datsko, V. I. Zelentsov
This work is licensed under a Creative Commons Attribution 4.0 International License.