Хімія, фізика та технологія поверхні, 2018, 9 (2), 167-175.

Дослідження гідратації полімолочної кислоти і впливу на неї органічних розчинників за даними 1Н ЯМР-спектроскопії



DOI: https://doi.org/10.15407/hftp09.02.167

V. V. Turov, K. O. Filatova, T. V. Krupska

Анотація


Полімолочна кислота (ПМК) належить до матеріалів, що біологічно руйнуються та для яких оптимальною умовою біодеградації є розпад матеріалу на воду і вуглекислий газ. Оскільки початковою стадією біодеградації є насичення полімера водою, значний інтерес являє вивчення процесу водопоглинання ПМК і вплив на нього присутності обмеженої кількості речовин, здатних поглинатися полімером. Методом низькотемпературної 1Н ЯМР-спектроскопії вивчено стан води в полімолочній кислоті та вплив на нього присутності дейтерохлороформу та суміші 6:1 CDCl3 з трифтороцтовою кислотою. Показано, що зразки полімолочної кислоти здатні поглинати не більше 1 % води протягом першої години і 10 мас. % в наступні сім днів насичення водою. При витримуванні зразка полімолочної кислоти у водному середовищі протягом тижня вид спектрів змінюється, що свідчить про зміни, які відбуваються в полімерній матриці. На підставі змін у спектрах поглинутої води можна зробити висновок, що спочатку вода поглинається у вигляді поліасоціатів, що мають хімічний зсув в області dH = 5 м.д., а згодом, завдяки процесу дифузії, - локалізується поблизу електронодонорних центрів полімера (карбонільних і етерних груп), з якими утворює водневозв´язані комплекси. Для таких комплексів характерні менші значення хімічного зсуву. При введенні в систему трифтороцтової кислоти відбувається формування в полімерній матриці системи кластерів вода-кислота з різним вмістом кислоти. Спектрально це проявляється в появі кількох сигналів в області dH = 6–9 м.д., що різняться за величиною хімічного зсуву. Великим значенням хімічного зсуву відповідають кластери з більшою концентрацією кислоти.

Ключові слова


полімолочна кислота; низькотемпературна 1Н ЯМР-спектроскопія; кластери води; незамерзаюча вода

Повний текст:

PDF (Русский)

Посилання


1. Kricheldorf H.R., Jonté J.M. New polymer syntheses. Polym. Bull. 1983. 9(6–7): 276. https://doi.org/10.1007/BF00262719

2. Martin O., Avérous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001. 42(14): 6209. https://doi.org/10.1016/S0032-3861(01)00086-6

3. Azeredo H.M.C.D. Nanocomposites for food packaging applications. Food Res. Int. 2009. 42(9): 1240. https://doi.org/10.1016/j.foodres.2009.03.019

4. López-Rubio A., Almenar E., Hernandez-Mu-oz P. Lagaron J. M., Catala R., Gavara R. Overview of active polymer based packaging technologies for food applications. Food Rev. Int. 2004. 20(4): 357. https://doi.org/10.1081/FRI-200033462

5. Lopez-Rubio A., Gavara R., Lagaron J.M. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci. Technol. 2006. 17(10): 567. https://doi.org/10.1016/j.tifs.2006.04.012

6. Guo Shuang-Zhuang, Yang Xuelu, Heuzey Marie-Claude, Therriault Daniel 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale. 2015. 7(15): 6451. https://doi.org/10.1039/C5NR00278H

7. Joerger R.D. Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag. Technol. Sci. 2007. 20(4): 231. https://doi.org/10.1002/pts.774

8. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (New York: Taylor & Francis, 2013). https://doi.org/10.1201/b14202

9. Gun'ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces. Adv. Colloid Interface Sci. 2005. 118(1–3): 125. https://doi.org/10.1016/j.cis.2005.07.003

10. Aksnes D.W., Kimtys L. Characterization of mesoporous solids by 1H NMR. Solid State Nucl. Magn. Reson. 2004. 25: 146. https://doi.org/10.1016/j.ssnmr.2003.03.001

11. Petrov O.V., Furo I. NMR cryoporometry: Principles, application and potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

12. Glushkova V.P. Thermodynamic Properties of Individual Compounds. (Moscow: Nauka, 1978). [in Russian]

13. Gun'ko V.M., Turov V.V., Leboda R., Skubiszewska-Zieba J., Charmas B. Confined space effects driving to heterogenization of solutions at the interfaces. Adsorption. 2012. 19: 305. https://doi.org/10.1007/s10450-012-9453-8

14. Turov V.V., Gun'ko V.M., Turova A.A., Morozova L.P., Voronin E.F. Interfacial behavior of concentrated HCl solution and water clustered at a surface of nanosilica in weakly polar solvent media. Colloids Surf. A. 2011. 390(1–3): 48. https://doi.org/10.1016/j.colsurfa.2011.08.053

15. Turov V., Lupascu T., Krupska T., Povar I. Nanosilica A-300 influence on water structures formed on the bioactive agent Enoxil. Can. J. Chem. 2016. 94(1): 88. https://doi.org/10.1139/cjc-2015-0360

16. Gun'ko V.M., Morozova L.P., Turova A.A., Turov A.V., Gaishun V.E., Bogatyrev V.M., Turov V.V. Hydrated phosphorus oxyacids alone and adsorbed on nanosilica. J. Colloid Interface Sci. 2012. 368(1): 263. https://doi.org/10.1016/j.jcis.2011.11.018

17. Pople J.A., Schneider W.G., Bernstein H.J. High-Resolution Nuclear Magnetic Resonance. (New York: McGraw-Hill Book Company, 1959).




DOI: https://doi.org/10.15407/hftp09.02.167

Copyright (©) 2018 V. V. Turov, K. O. Filatova, T. V. Krupska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.