Текстурні характеристики та організація композитів із пірогенного кремнезему та високомолекулярних сполук
DOI: https://doi.org/10.15407/hftp13.02.127
Анотація
Різні композити з нанокремнеземом (та іншими нанооксидами) та полімерами мають практичне значення. Визначення детальних текстурно-морфологічних характеристик нанокремнеземів, оброблених окремо та в композитах з різними полімерами (лінійні полідиметилсилоксан, полівінілпірролідон, полівініловий спирт, поліетиленоксид та поліетиленгліколь, 3D-поліметилсилоксан) та білками (яєчний альбумін, желатин та осеїн) може розглядатися як інструмент для аналізу реорганізації ієрархічних структур у композитах (агрегати наночастинок, агломерати агрегатів, мікро- та видимі частинки). Цей аналіз дозволяє з’ясувати різні зміни пористості та доступної площі поверхні, внески пор різних розмірів, форм та стінок пор з кремнезему або полімера/білка залежно від різноманітних чинників. Зібрана інформація може бути використана для прогнозування можливих характеристик та властивостей різних композитів. Серед факторів, що впливають на властивості композитів, тип, молекулярна маса та вміст полімерів та умов тренування можуть відігравати головну роль. Наявність великого набору факторів ускладнює аналіз композитів, якщо використовувати спрощені підходи та методи. В цілому, вибір складу та певних умов створення композитів дозволяє контролювати всі текстурні характеристики кінцевих матеріалів, особливо, якщо всі вони точно оцінюються з мінімальними можливими помилками з використанням добре розвинених та адекватних методів.
Ключові слова
Посилання
1. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. (Chichester: Wiley, 1979).
2. Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
3. Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
4. Somasundaran P. Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
5. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).
6. Hastie J.W. Materials Chemistry at High Temperatures. V. 1. Characterization. V. 2. Processing and Performance. (Clifton NJ: Humana Press, 1990). https://doi.org/10.1007/978-1-4612-0481-7
7. Büchel K.H., Moretto H.-H., Woditsch P. Industrial inorganic chemistry. (Weinheim: Wiley-VCHVerlag GmbH, 2000). https://doi.org/10.1002/9783527613328
8. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
9. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed Nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003
10. Basic characteristics of Aerosil fumed silica (4th ed.). Tech. Bull. Fine Particles 11. (Hanau: Evonik Industries, 2014).
11. Adamson A.W., Gast A.P. Physical Chemistry of Surface. Sixth edition. (New York: Wiley, 1997).
12. Birdi K.S. Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206
13. Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Report. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
14. Barany S. Role of Interfaces in Environmental Protection. NATO Science Series IV Earth and Environmental Sciences. V. 24. (Dordrecht: Springer, 2003).
15. Nicolais L., Borzacchiello A., Lee S.M. Wiley Encyclopedia of Composite. Materials, 5-Volume set, 2nd ed. (Hoboken, NJ: Wiley, 2012).
16. Auner N., Weis J. Oganosilicon Chemistry VI. (Weinheim: Wiley-VCH Verlag GmbH, 2005). https://doi.org/10.1002/9783527618224
17. Piemonte V., De Falco M., Basile A. Sustainable Development in Chemical Engineering - Innovative Technologies. First Edition. (Chichester, UK: John Wiley & Sons, 2013). https://doi.org/10.1002/9781118629703
18. Theodore L., Kunz R.G. Nanotechnology: Environmental Implications and Solutions. (Hoboken, N.J.: John Wiley & Sons, 2005). https://doi.org/10.1002/0471711705
19. Hashim A.A. Smart Nanoparticles Technology. (Rijeka, Croatia: InTech, 2012). https://doi.org/10.5772/1969
20. Cabot Corporation. http://www.cabotcorp.com/solutions/products-plus/fumed-metal-oxides/
21. DuPont. http://www.dupont.com/.
22. Evonik Ind. http://corporate.evonik.com/en/Pages/default.aspx, http://www.aerosil.com/product/aerosil/en/services/downloads/Pages/test-methods.aspx
23. Ochsner A., Ahmed W., Ali N. Nanocomposite Coatings and Nanocomposite Materials. (Zurich: Trans Tech Publications Ltd, 2009).
24. Rahman R. Silica and Clay Dispersed Polymer Nanocomposites. Preparation, Properties and Applications. (Duxford: Elsevier, Woodhead Publishing, 2018).
25. Chung S.-C., Hahm W.-G., Im S.-S., Oh S.-G. Poly(ethylene terephthalate)(PET) nanocomposites filled with fumed silicas by melt compounding. Macromol. Res. 2002. 10(4): 221. https://doi.org/10.1007/BF03218309
26. Li Y., Yerian J.A., Khan S.A., Fedkiw P.S. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries. J. Power Sources. 2006. 161: 1288. https://doi.org/10.1016/j.jpowsour.2006.06.015
27. Rishi K., Pallerla L., Beaucage G., Tang A. Dispersion of surface-modified, aggregated, fumed silica in polymer nanocomposites. J. Appl. Phys. 2020. 127(17): 174702. https://doi.org/10.1063/1.5144252
28. Mora-Barrantes I., Rodríguez A., Ibarra L., González L., Valentín J.L. Overcoming the disadvantages of fumed silica as filler in elastomer composites. J. Mater. Chem. 2011. 21(20): 7381. https://doi.org/10.1039/c1jm10410a
29. Mahtabani A., Rytöluoto I., Anyszka R., He X., Saarimäki E., Lahti K., Paajanen M., Dierkes W., Blume A. On the Silica Surface Modification and Its Effect on Charge Trapping and Transport in PP-Based Dielectric Nanocomposites. ACS Appl. Polym. Mater. 2020. 2(8): 3148. https://doi.org/10.1021/acsapm.0c00349
30. Ver Meer M.A., Narasimhan B., Shanks B.H., Mallapragada S.K. Effect of mesoporosity on thermal and mechanical properties of polystyrene/silica composites. ACS Appl. Mater. Interfaces. 2010. 2: 41. https://doi.org/10.1021/am900540x
31. Sipaut C.S., Adnan A.R., Rahman I.Ab., Bakar M.A., Ismail J., Chee C.K. Properties and morphology of bulk epoxy composites filled with modified fumed silica - epoxy nanocomposites. J. Appl. Sci. 2007. 7: 27. https://doi.org/10.3923/jas.2007.27.34
32. Sequeira D., Mascarenhas J., Picardo D., Dias R., Sutari O. Mechanical behaviour of fumed silica/glass reinforced polyester nanocomposites. Am. J. Mater. Sci. 2015. 5(3C): 92.
33. Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Nychiporuk Yu.M., Balakin D.Yu., Sternik D., Derylo-Marczewska A. Nanosilica modified by polydimethylsiloxane depolymerized and chemically bound to nanoparticles or physically bound to unmodified or modified surfaces: Structure and interfacial phenomena. J. Colloid Interface Sci. 2018. 529: 273. https://doi.org/10.1016/j.jcis.2018.06.019
34. Gun'ko V.M., Turov V.V., Gorbik P.P. Water at the Interfaces. (Kyiv: Naukova Dumka, 2009).
35. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Gerashchenko I.I., Turova A.A., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Janusz W. Comparative characterization of polymethylsiloxanehydrogel and silylated fumed silica and silicagel. J. Colloid Interface Sci. 2007. 308(1): 142. https://doi.org/10.1016/j.jcis.2006.12.053
36. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102
37. Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409
38. Gun'ko V.M., Voronin E.F., Zarko V.I., Goncharuk E.V., Turov V.V., Pakhovchishin S.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Chibowski E., Chuiko A.A. Interaction of poly(vinylpyrrolidone) with fumed silica in dry and wet powders and aqueous us pensions. Colloids Surf. A. 2004. 233: 63. https://doi.org/10.1016/j.colsurfa.2003.11.024
39. Gun'ko V.M., Zarko V.I., Voronin E.F., Turov V.V., Mironyuk I.F., Gerashchenko I.I., Goncharuk E.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Levchuk Yu.N., Klyueva A.V. Impact of some organics on structural and adsorptive characteristics of fumed silica in different media. Langmuir. 2002. 18(3): 581. https://doi.org/10.1021/la0103867
40. Voronin E.F., Guzenko N.V., Gun'ko V.M., Malysheva M.L., Pakhlov E.M., Eremenko B.V., Chuiko A.A. Adsorption of polyvinylpyrrolidone and polyoxyethylene with pure and mixed silicon, aluminium, and titanium oxides. Surface. 2002. 7-8: 5.
41. Gun'ko V.M., Voronin E.F., Nosach L.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba J. Adsorption and migration of poly(vinyl pyrrolidone) at a fumed silica surface. Adsort. Sci. Technol. 2006. 24: 143. https://doi.org/10.1260/026361706778529173
42. Gun'ko V.M., Voronin E.F., Nosach L.V., Pakhlov E.M., Voronina O.E., Guzenko N.V., Kazakova O.A., Leboda R., Skubiszewska-Zięba J. Nanocomposites with fumed silica/poly(vinylpyrrolidone) prepare data low content of solvents. Appl. Surf. Sci. 2006. 253(11): 2801. https://doi.org/10.1016/j.apsusc.2006.05.065
43. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Goncharuk E.V., Nychiporuk Y.M., Zarko V.I., Blitz J.P. Influence of different treatments on characteristics of nanooxide powders alone or with adsorbed polar polymers or proteins. Powder Technol. 2008. 187(2): 146. https://doi.org/10.1016/j.powtec.2008.02.007
44. Gun'ko V.M., Zarko V.I., Andriyko L.S., Leboda R., Skubiszewska-Zięba J., Janusz W. Interaction of nano oxides with poly(vinylalcohol). Pol. J. Chem. 2007. 81(3): 411.
45. Gun'ko V.M., Pissis P., Spanoudaki A., Zarko V.I., Nychiporuk Y.M., Andriyko L.S., Goncharuk E.V., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G. Relaxation phenomena in poly(vinylalcohol)/fumed silica affected by interfacial water. J. Colloid Interface Sci. 2007. 312(2): 201. https://doi.org/10.1016/j.jcis.2007.03.065
46. Voronin E.F., Gun'ko V.M., Guzenko N.V., Pakhlov E.M., Nosach L.V., Malysheva M.L., Skubiszewska-Zięba J., Leboda R., Borysenko M.V., Chuiko A.A. Interaction of poly(ethylene oxide) with fumed silica. J. Colloid Interface Sci. 2004. 279(2): 326. https://doi.org/10.1016/j.jcis.2004.06.073
47. Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1-2): 1. https://doi.org/10.1016/j.cis.2006.11.001
48. Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Voronin E.F., Zarko V.I., Levitskaya S.I., Brei V.V., Guzenko N.V., Kazakova O.A., Seledets O., Janusz W., Chibowski S. Pyrocarbons prepared by carbonisation of polymers adsorbed or synthesised on a surface of silica and mixed oxides. Appl. Surface Sci. 2004. 227(1-4): 219. https://doi.org/10.1016/j.apsusc.2003.11.077
49. Gun'ko V.M., Zarko V.I., Voronin E.F., Goncharuk E.V., Andriyko L.S., Guzenko N.V., Nosach L.V., Janusz W. Successive interaction of pairs of soluble organics with nanosilica in aqueous media. J. Colloid Interface Sci. 2006. 300(1): 20. https://doi.org/10.1016/j.jcis.2006.03.034
50. Blitz J.P., Gun'ko V.M. Surface Chemistry in Biomedical and Environmental Science. NATO Science Series II: Mathematics, Physics and Chemistry. V. 228. (Dordrecht: Springer, 2006). https://doi.org/10.1007/1-4020-4741-X
51. Gun'ko V.M., Turov V.V., Leboda R., Zarko V.I., Skubiszewska-Zięba J., Charmas B. Adsorption, NMR and thermally stimulated depolarization current methods for comparative analysis of heterogeneous solid and soft materials. Langmuir. 2007. 23(6): 3184. https://doi.org/10.1021/la062648g
52. Gun'ko V.M., Klyueva A.V., Levchuk Yu.N., Leboda R. Photon correlation spectroscopy investigations of proteins. Adv. Colloid Interface Sci. 2003. 105(1-3): 201. https://doi.org/10.1016/S0001-8686(03)00091-5
53. Gun'ko V.M. Competitive adsorption. Theor. Exp. Chem. 2007: 43: 139. https://doi.org/10.1007/s11237-007-0020-4
54. Kulkarni P., Baron P.A., Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. Third Edition. (New York: John Wiley & Sons, 2011). https://doi.org/10.1002/9781118001684
55. Pietsch W. Agglomeration in Industry. (Weinheim: Wiley-VCH Verlag GmbH, 2005).
56. Biricik H., Sarier N. Comparative study of the characteristics of nano silica-, silica fume- and fly ash - incorporated cement mortars. Mater. Res. 2014. 17(3): 570. https://doi.org/10.1590/S1516-14392014005000054
57. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
58. Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008
59. Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3
60. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf A. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030
61. Gun'ko V.M., Mironyuk I.F., Zarko V.I., Turov V.V., Voronin E.F., Pakhlov E.M., Goncharuk E.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Levchuk Yu.N., Klyueva A.V. Fumed silicas possessing different morphology and hydrophilicity. J. Colloid Interface Sci. 2001. 242(1): 90. https://doi.org/10.1006/jcis.2001.7736
62. Gun'ko V.M., Voronin E.F., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Pakhlov E.M., Guzenko N.V., Chuiko A.A. The effect of heat, adsorption and mechanochemical treatments on stuck structure and adsorption properties of fumed silicas. Colloids Surf. A. 2003. 218: 125. https://doi.org/10.1016/S0927-7757(02)00598-8
63. Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B., Filipic M., Frutos M.J., Galtier P., Gott D., Gundert-Remy U., Kuhnle G.G., Leblanc J.-C., Lillegaard I.T., Moldeus P., Mortensen A., Oskarsson A., Stankovic I., Waalkens-Berendsen I., Woutersen R.A., Wright M., Boon P., Chrysafidis D., Gurtler R., Mosesso P., Parent-Massin D., Tobback P., Kovalkovicova N., Rincon A.M., Tard A., Lambre C. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018. 16(1): 5088. https://doi.org/10.2903/j.efsa.2018.5088
64. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
65. Do D.D., Nguyen C., Do H.D. Characterization of micro-mesoporous carbon media. Colloids Surf. A. 2001. 187-188: 51. https://doi.org/10.1016/S0927-7757(01)00621-5
66. Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
67. Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir.2006. 22(26): 11171. https://doi.org/10.1021/la0616146
68. Landers J., Gor G.Y., Neimark A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A. 2013. 437: 3. https://doi.org/10.1016/j.colsurfa.2013.01.007
69. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci.2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055
70. Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317
71. Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843. https://doi.org/10.1016/j.carbon.2004.01.059
72. Gun'ko V.M., Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005
73. Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117
74. Gun'ko V.M. Features of the morphology and texture of silica and carbon adsorbents. Surface. 2021. 13(28): 127. https://doi.org/10.15407/Surface.2021.13.127
75. Gregg S.J., Sing K.S.W., Stoeckli H.F. Characterization of Porous Solids. (London: Soc. Chem. Industry, 1979).
76. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physorption of gases, with special reference to the evaluation of surface area and pore size distribution. IUPAC Technical Report. Pure Application Chemistry. 2015. 87(9-10): 1051. https://doi.org/10.1515/pac-2014-1117
77. Lowell S., Shields J., Thomas M.A., Thommes M. Characterization of Porous Solids and Powders: Surface Area, Porosity and Density. (Dordrecht: Springer, 2004). https://doi.org/10.1007/978-1-4020-2303-3
78. Rouquerol J., Baron G.V., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A.V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. The characterization of macroporous solids: An overview of the methodology. Microporous. Mesoporous. Mater. 2012. 154: 2. https://doi.org/10.1016/j.micromeso.2011.09.031
79. Kar K.K. Composite Materials. Processing, Applications, Characterizations. (Berlin: Springer, 2017).
80. Wilde G. Nanostructured Materials. (Amsterdam: Elsevier, 2009).
81. Reithmaier J.P., Petkov P., Wilhelm Kulisch W., Popov C. Nanostructured Materials for Advanced Technological Applications. (Dordrecht: Springer, 2009). https://doi.org/10.1007/978-1-4020-9916-8
82. Kumar C.S.S.R. Nanomaterials for the Life Sciences V. 2. Nanostructured Oxides. (Weinheim: Wiley-VCH Verlag GmbH & Co., 2009).
83. Napierska D., Thomassen L.C.J., Lison D., Martens J.A., Hoet P.H. The Nanosilica Hazard: Another Variable Entity. Part. Fibre Toxicol. 2010. 7: 39. https://doi.org/10.1186/1743-8977-7-39
84. Zaia D.A.M. A review of adsorption of amino acids on minerals: Was it important for origin of life? Amino Acids. 2004. 27(1): 113. https://doi.org/10.1007/s00726-004-0106-4
85. Hudson S., Cooney J., Magner E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 2008. 47(45): 8582. https://doi.org/10.1002/anie.200705238
86. Rimola, A., Costa D., Sodupe, M., Lambert J.-F., Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments. Chem. Rev. 2013.113(6): 4216. https://doi.org/10.1021/cr3003054
87. Kumar A.P., Depan D, Tomer N.S., Singh R.P. Nanoscale particles for polymer degradation and stabilization -Trends and future perspectives. Prog. Polym. Sci. 2009. 34: 479.https://doi.org/10.1016/j.progpolymsci.2009.01.002
DOI: https://doi.org/10.15407/hftp13.02.127
Copyright (©) 2022 V. M. Gun'ko
This work is licensed under a Creative Commons Attribution 4.0 International License.