Композиційні матеріали на основі поліуретансечовин з фрагментами кополімера полі(вінілбутираль-вінілацетат-вініловий спирт), наповнені кремнеземом, модифікованим сполуками срібла та міді
DOI: https://doi.org/10.15407/hftp13.03.274
Анотація
Синтезовано ряд полімерних композитів на основі поліуретансечовин з фрагментами кополімера полі(вінілбутираль-вінілацетат-вініловий спирт) та подовжувача макроланцюга 1,6-гексаметилендіаміну, наповнених осадженим кремнеземом, що містить наночастинки срібла та міді. Вміст срібла в нанокремнеземних наповнювачах становив 0.1 та 0.2 ммоль на 1 г SiO2 (в зразках 01Ag та 02AgCu), а міді – 0.14 і 0.2 ммоль на 1 г SiO2 (в AgCu та 02AgCu, відповідно). Для наповнення полімера використовували 0.1, 0.5 та 1.0 мас. % наповнювача. Методом ІЧ-спектроскопії встановлено, що при введенні модифікованих нанокомпозитів в полімерну матрицю відбувається фізична іммобілізація модифікованих кремнеземів за рахунок міжмолекулярних водневих зв’язків. Досліджено вплив наповнювачів на структуру та властивості полімерних матеріалів, зокрема, на теплофізичні властивості та фізико-механічні показники (міцність при розриві та відносне подовження при розриві). Результати фізико-механічних випробувань дозволили встановити, що міцнісні характеристики поліуретансечовини (ПУС) залежать від вмісту та концентрації наповнювачів. Було встановлено, що найвищими значеннями міцності при розриві характеризуються полімерні матеріали, наповнені модифікованими кремнеземними складу 02AgCu (по 0.2 ммоль Ag та Cu на 1 г SiO2). Показано, що введення кремнеземних нанокомпозитів спричиняє зниження відносного подовження при розриві полімерного матеріалу, тоді як найвищими значеннями характеризувався зразок, наповнений модифікованим нанокремнеземом AgCu (0.1 та 0.14 ммоль Ag та Cu на 1 г SiO2). Введення кремнеземних нанокомпозитів до складу ПУС, який містить фрагменти кополімера полівінілбутиралю, призводить до підвищення міцності та зниження відносного подовження при розриві. Найкращі показники міцності та відносного подовження при розриві має полімерний зразок з 0.5 мас. % наповнювача. Показано, що теплофізичні характеристики залежать від концентрації та складу наповнювачів і мають нелінійний характер. Синтезовані нанокомпозити можуть бути ефективними як матеріали біомедичного призначення.
Ключові слова
Посилання
Liu X., Niu Y., Chen K.C., Chen S. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater. Sci. Eng. C. 2017. 71: 289. https://doi.org/10.1016/j.msec.2016.10.019
Burke A., Hasirci N. Polyurethanes in Biomedical Applications. Advances in Experimental Medicine and Biology. 2004. 553: 83. https://doi.org/10.1007/978-0-306-48584-8_7
Caracciolo P.C., Queiroz A.A.A., Higa O.Z., Buffa F., Abraham G.A. Segmented poly(esterurethane urea)s from novel urea-diol chain extenders: Synthesis, characterization and in vitro biological properties. Acta Biomater. 2008. 4(4): 976. https://doi.org/10.1016/j.actbio.2008.02.016
Hong Y., Guan J., Fujimoto K.L., Hashizume R., Pelinescu A.L., Wagner W.R. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomater. 2010. 31(15): 4249. https://doi.org/10.1016/j.biomaterials.2010.02.005
Zieleniewska M., Auguscik M., Prociak A., Rojek P., Ryszkowska J. Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polym. Degrad. Stab. 2014. 108: 241. https://doi.org/10.1016/j.polymdegradstab.2014.03.010
Rozhnova R., Karpenko O., Rudenchyk T., Galatenko N., Kiselova T. Synthesis film materials with decametoxine on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinylalcohol. NaUKMA Research Papers. 2016. 183: 54. [in Ukrainian].
Rudenchyk T., Rozhnova R., Galatenko N., Nechaeva L. Study of Biodegradation of film materials with D-Cycloserine based on polyurethaneurea and the dynamics of drug release. American Journal of Polymer Science and Technology. 2019. 5(4): 97. https://doi.org/10.11648/j.ajpst.20190504.11
Rudenchyk T.V., Roznova R.A., Galatenko N.A., Kiselova T.O. Film materials with tiamulin fumarate on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol. Odesa National University Herald. Chemistry. 2016. 21,3(59): 67. [in Ukrainian]. https://doi.org/10.18524/2304-0947.2016.3(59).79591
Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Narazhaiko L.F. Biocompatible composites with lysozyme based on polyurethaneurea with N-vinylpyrrolidone copolymer fragments, vinylacetate and vinyl alcohol. Odesa National University Herald. Chemistry. 2018. 23,2(66): 46. [in Ukrainian]. https://doi.org/10.18524/2304-0947.2018.2(66).132042
Mazur M., Rozhnova R.A., Galatenko N.A., Necheva L.Yu. Study of the dynamics of release of the anti-inflammatory drug amizon from a polymeric dosage form based on hydrophilic block copolyurethane, which contains a copolymer of N-vinylpyrrolidone with vinyl alcohol. Reports of the National Academy of Sciences of Ukraine. 2007. 5: 141. [in Ukrainian].
Stashenko K.V., Rudenchik T.V., Rozhnova R.A. Kiselova T.O. Development of composite materials based on polyurethaneurea with fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol and lysozyme. Voprosy khimii i khimicheskoi tekhnologii. 2018. 2: 115. [in Ukrainian].
Posavec D., Andre D., Bogner U., Bernhardt G., Nagl S. Polyvinyl butyral nanobeads: preparation, characterization, biocompatibility and cancer cell uptake. Microchim. Acta. 2011. 173: 391. https://doi.org/10.1007/s00604-011-0573-8
Posavec D., Müller R., Bogner U., Bernhardt G., Knör G. Polyvinyl butyral DMN-conjugates for the controlled release of singlet oxygenin medical and antimicrobial applications. Biomaterials and Biomechanics in Bioengineering. 2014. 1(2): 73. https://doi.org/10.12989/bme.2014.1.2.073
Stashenko K.V., Rudenchyk T.V., Galatenko N.A., Rozhnova R.A. Synthesis and properties of composite materials based on polyurethaneurea with fragments of polyvinylbutyral copolymer (vinyl acetate with vinyl alcohol) and lysozyme. Voprosy khimii i khimicheskoi tekhnologii. 2020. 1: 71. [in Ukrainian]. https://doi.org/10.32434/0321-4095-2019-128-1-71-79
Stashenko K.V., Vislohuzova T.V., Galatenko N.A., Rozhnova R.A. Development of composite materials based on polyurethane ureas with fragments of a copolymer of poly(vinyl butyral, vinyl acetate and vinyl alcohol) and lysozyme. Polymer Journal. 2020. 2: 126. [in Ukrainian]. https://doi.org/10.15407/polymerj.42.02.136
Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Nechaeva L.Yu. Study of the influence of the model biological environment on the structure and properties of polyurethaneureas with lysozyme, which contain fragments of copolymer of vinylbutyral, vinyl acetate and vinyl alcohol in the structure. Polymer Journal. 2019. 41(3): 198. [in Ukrainian]. https://doi.org/10.15407/polymerj.41.03.198
Nosach L., Hnatyshyn L. Application of high disperse silica in medicine. Naukovi Zapysky. 2003. 22: 442. [in Ukrainian].
Chernyakova A.M., Minukhin V.V., Voronin E.F. The modern view on the topical treatment of durns with an infectious component. Bulletin of problems biology and medicine. 2016. 1(133), 4: 68. [in Ukrainian].
Dulski M., Malarz K., Kuczak M., Dudek K., Matus K., Sułowicz S., Mrozek-Wilczkiewicz A., Nowak A. An Organic-Inorganic Hybrid Nanocomposite as a Potential New Biological Agent. Nanomaterials. 2020. 10(12): 2551. https://doi.org/10.3390/nano10122551
Priebe M., Widmer J., SuharthaLöwa N., Abram S.L., Mottas I., Woischnig A.K., Brunetto P.S., Khanna N., Bourquin C., Fromm K.M. Antimicrobial silver-filled silica nanorattles with low immunotoxicity in dendritic cells. Nanomed. Nanotechnol. Biol. Med. 2017. 13(1): 11. https://doi.org/10.1016/j.nano.2016.08.002
Wysocka-Krol K., Olsztynska-Janus S., Plesch G., Plecenik A., Podbielska H., Bauer J. Nano-silver modified silica particles in antibacterial photodynamic therapy. Appl. Surf. Sci. 2018. 461: 260. https://doi.org/10.1016/j.apsusc.2018.05.014
Bogatyrov V.M., Oranska O.I., Galaburda M.V., Gerashchenko I.I., Osolodchenko T.P., Yusypchuk V.I. Silica nanocomposites doped with silver, copper, or zinc compound and their antimicrobial properties. Him. Fiz. Tehnol. Poverhni. 2016. 7(1): 44. [in Russian]. https://doi.org/10.15407/hftp07.01.044
Voronin E.F., Nosach L.V., Gun'ko V.M., Charmas B. Geometric and mechano-sorption modification of fumed nanosilica in the gaseous dispersion media. Physics and Chemistry of Solid State. 2019. 20(1): 22. [in Ukrainian]. https://doi.org/10.15330/pcss.20.1.26
Patent UA 69526. Savchenko D.S., Chekman I.S., Voroniy S.P., Nosach L.V. Method of obtaining nanocomposite of highly dispersed silica-clusters of silver with antimicrobial and sorption-detoxification properties. 2012.
Interstate Standard (GOST 18307-78). White soot. Specifications. https://internet-law.ru/gosts/gost/24746/
Bogatyrov V.M., Galaburda M.V., Zaichenko O.M., Tsyganenko K.S., Savchuk Ya.I. Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn. Surface. 2015. 7(22): 119.
Bekker G., Berger V., Domshke G. Organikum. V. 2. (Moscow: Mir, 1979). [in Russian].
Patent UA 118518. Tsyganenko K.S., Galaburda M.V., Savchuk Y.I., Yusypchuk V.I., Zaichenko O.M., Bogatyrev V.M. The method of obtaining a nanocomposite with antifungal properties based on silver, copper and silica. 2017.
Pretsch E., Bellmann P., Affolter C. Structure determination of organic compounds. Tables of Spectral Data (Springer-Verlag Berlin Heidelberg, 2009).
Interstate Standard (GOST 25.601-80). Mechanical testing methods for composite materials with a polymer matrix (composites). Tensile test method for flat specimens at normal, elevated and low temperatures. https://internet-law.ru/gosts/gost/4105/
Bogatyrov V.M., Oranska O.I., Galaburda M.V., Yakovenko L.O., Tsyganenko K.S., Savchuk Ya.I., Zaichenko O.M. Influence of aging under the light on the fungicidal activity of silvercontaining silica nanocomposites. Surfase. 2016. 8(23): 259. [in Russian]. https://doi.org/10.15407/Surface.2016.08.259
Zhu M., Qian G., Ding G., Wang Z., Wang M. Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres. Mater. Chem. Phys. 2006. 96(2-3): 489. https://doi.org/10.1016/j.matchemphys.2005.07.040
Kong S.A., Wang H., Yang X., Hou Ya., Shan Y. A facile direct route to synthesize large-pore mesoporous silica in corporating high CuO loading with special catalytic property. Microporous Mesoporous Mater. 2009. 118: 348. https://doi.org/10.1016/j.micromeso.2008.09.006
Cheng Y., Lin Y, Xu J., He J., Wang T., Yu G., Shao D., Wang W., Lu F. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants. Appl. Surf. Sci. 2016. 366: 120. https://doi.org/10.1016/j.apsusc.2015.12.238
Bogatyrov V.M., Gun'ko V.M., Galaburda M.V. Oranska O.I., Petryk I.S., Tsyganenko K.S., Savchuk Ya.I., Chobotarov A.Yu., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A. The effect of photoactivated transformations of Ag+ and Ag0 in silica fillers on their biocidal activity. Res. Chem. Intermed. 2019. 45: 3985. https://doi.org/10.1007/s11164-019-03885-2
Tolstov A.L., Malanchuk O.M., Bey I.M., Klimchuk D.A. Preparation and characterization of antibacterial polymer composites based on poly(vinyl alcohol) and nanoparticulate silver. Polymer Journal. 2013. 35(3): 343. [in Russian].
DOI: https://doi.org/10.15407/hftp13.03.274
Copyright (©) 2022 T. V. Vislohuzova, N. A. Galatenko, R. A. Rozhnova, V. M. Bogatyrov, M. V. Galaburda
This work is licensed under a Creative Commons Attribution 4.0 International License.