Хімія, фізика та технологія поверхні, 2022, 13 (4), 434-446.

Вплив обмінної f-d взаємодії на властивості нанорозмірних структур на основі металів Fe, Co, Ni та оксидів РЗМ. Огляд



DOI: https://doi.org/10.15407/hftp13.04.434

A. M. Kasumov, A. I. Dmitriev, K. A. Korotko, V. M. Karavaeva, K. O. Vyshnevska, A. I. Ievtushenko

Анотація


Проведено огляд робіт авторів, опублікованих у період 2009–2022 років, та присвячених дослідженню властивостей нанорозмірних структур, що містять шари, що контактують Fe, Co, Ni, Fe3O4 / оксид РЗМ (рідкісноземельного металу). Розглянуто також технологію створення та структурні особливості даних наноструктур. Фізико-хімічні явища в інтерфейсі контактуючих шарів дуже багатопрофільні. Це є наслідком їхньої залежності від різних умов, насамперед, від режимів технологій їхнього отримання та властивостей вихідних компонентів. Завдання пізнання значно ускладнюється щодо магнітних наноструктур. Для ефективного дослідження властивостей шаруватих наноструктур, що містять феромагнітні плівки, нами використовувалися магнітні методи досліджень. Методом ЕПР встановлено, що між атомами з незаповненимиелектронними оболонками, що входять до складу контактуючих шарів, встановлюється обмінна f-d взаємодія, що впорядковує магнітну структуру феромагнітних шарів. Методом аномального ефекту Холла показано, що впорядкування магнітної структури призводить до зростання їхньої намагніченості. Посилення гальваномагнітних властивостей у структурах Fe3O4/REМ оксид/Fe3O4 показало, що обмінна взаємодія може мати як f-d, так і d-d характер. А це, у свою чергу, призводить до посилення властивостей, що залежать від намагніченості, таких як гальваномагнітні, магнітооптичні, вольт-амперні. Це може бути використано в нанотехнологіях для підвищення вищевказаних властивостей без споживання енергії та використання підсилювального обладнання.


Ключові слова


f-d взаємодія; тонкоплівкові структури; ЕПР; аномальний ефект Холла; магнітні властивості

Повний текст:

PDF (English)

Посилання


Vonsovsky V.S. Magnetism. (Moscow: Nauka, 1971). [in Russian].

Zvezdin A.K., Matveev V.M., Mukhin A.A., Popov A.I. Rare Earth Ions in Magnetically-Ordered Crystals. (Moscow: Nauka, 1985). [in Russian].

Zvezdin A.K., Komov V.A. Magneto-optics of thin films. (Moscow: Nauka, 1988). [in Russian].

Vaskovsky V.O. Magnetism of nanosystems based on rare earth and 3d metals. (Yekaterinburg: Ural University, 2007). [in Russian].

Kasumov A.M., Dmitriev A.I., Bataiev Yu.M., Bataiev M.M., Karavaeva V.M., Korotkov K.A., Ievtushenko A.I. EPR study of interlayer interaction in Gd2O3/Fe nanostructure. Him. Fiz. Tehnol. Poverhni. 2021. 12(2): 144. https://doi.org/10.15407/hftp12.02.144

Kasumov A.M., Dmitriev A.I., Radchenko M.V., Baybara A.E., Bykov O.I., Korotkov K.A., Karavaeva V.M., Vyshnevska K.O., Olifan O.I., Ievtushenko A.I. Anomalous Hall effect in two-layer nanoscale Ni / Gd2O3 films. Him. Fiz. Tehnol. Poverhni. 2022. 13(1): 105. [in Ukrainian]. https://doi.org/10.15407/hftp13.01.105

Kasumov A.M., Karavaeva V.M., Mikitchenko A.A., Shapoval K.O., Perepelitsa M.A., Lashkarev G.V. Galvanomagnetic properties of thin-film (Fe, Co, Ni)/rare earth metal oxide structures. Powder Metall. Met. Ceram. 2018. 57(5-6): 325. https://doi.org/10.1007/s11106-018-9985-x

Kasumov A.M., Karavayeva V.M., Shapoval K.O., Lashkarov G.V. Enhancement of the Faraday Effect in Thin Film Structure Tb2O3/Fe Due to f-d Layer Interaction. Nanosistemi, Nanomateriali, Nanotehnologii. 2018. 16(1): 181. https://doi.org/10.15407/nnn.16.01.181

Kasumov A.M., Shapoval K.O., Karavayeva V.M., Olifan E.I., Radchuk S.V. Effect of the f-d exchange interaction on the properties of thin-film MDM structures (M-Fe, Co, Ni; D-Tb2O3). Powder Metall. Met. Ceram. 2020. 57(5-6): 108. https://doi.org/10.1007/s11106-020-00112-1

Kasumov A.M., Khrinovsky V.Z., Karavaeva V.M. Galvanomagnetic properties of nanostructures Cu-Fe3O4-Me2O3-Fe3O4-Cu. Modern problems of physical materials science. 2014. 23: 165. [in Russian].

Andreeva A.F., Kasumov A.M., Khrinovsky V.Z. Influence of oxides of rare earth metals on the magnetization of thin films of magnetite Fe3O4. Nanostructural Materials Science. 2013. 2: 58. [in Russian]

Andreeva A.F., Kasumov A.M., Khrinovsky V.Z., Mikitchenko A.A. Magnetoimedance of Cu-Fe3O4-CeO2-Fe3O4-Cu nanostructure. Modern problems of materials science. 2012. 21: 142. [in Russian].

Kawaguchi K., Sohma M., Oosawa Y. Magnetic properties of Fe/EuO multilayered film. J. Magn. Magn. Mater. 1996. 156(1-3): 235. https://doi.org/10.1016/0304-8853(95)00851-9

Kawaguchi K., Sohma M., Oscanva Y., Manago T. 151Eu and 57Fe Mossbauer and magnetization study on EuOx / Fe multilayered films. J. Magn. Magn. Mater. 1998. 177-181(2): 1186. https://doi.org/10.1016/S0304-8853(97)00415-0

Kawaguchi K., Sohma M., Manago T. Perpendicular magnetic anisotropy of R2O3/Fe multilayers. J. Magn. Magn. Mater. 1999. 198-199: 513. https://doi.org/10.1016/S0304-8853(98)01188-3

Krupa N.N. Control of the magnetic state of multilayer nanofilms using laser radiation. J. Exp. Theor. Phys. 2011. 81(1): 111. [in Russian]. https://doi.org/10.1134/S1063784211010142

Andreeva A.F., Kasumov A.M. Thin film crystallization behaviors for oxides of rare-earth metals on amorphous silica. Nanostructured Materials Coating for Beomedical and Sensor Aplications-NATO Science Series. 2003. 102: 169. [in Russian]. https://doi.org/10.1007/978-94-010-0157-1_17

Kasumov Α.M., Shapoval K.O., Karavaeva V.M., Lukashevich V.O., Lashkarev G.V. Structural interaction of layers in thin film Fe/Tb2O3. In: International Scientific and Practical Conference "Physical and Chemical Technologies - 2018". (Dnipro, Ukraine, October 18-20, 2018). [in Russian].

Andreeva A.F., Kasumov A.M., Dvoineneko O.K. Electrical and magnetoelectric properties of multilayer nanofilms Νi/Υ2Ο3, II Inter. In: Conf. "Physical and chemical bases of molding and modification of micro-nanostructures" (FMMN'2008). V. 2. (Kharkiv, Ukraine, 2008). P. 358. [in Russian].

Andreeva A.F., Kasumov A.M. Structure and morphology of multilayer Νi/Y2O3 nanofilms grown in a magnetic field. In: HighMatTech International Conference. (October 19-23, 2009, Kyiv, Ukraine). P. 22.

Landau L.D., Lifshits E.M. Theoretical physics. Quantum electrodynamics. (Moscow: Nauka, 1989). [in Russian].

Kasumov A.M., Karavaeva V.M., Perepelytsa M.O., Lashkarev G.V. Spectral dependence of Faraday effect in nanosize Tb2O3/Fe. In: A selection of abstracts of the XI International Conference of students, graduate students and young scientists "Perspective technologies based on new physical and material science achievements and computer design of materials". 2018. P. 190.

Kasumov A.M., Shapoval K.O., Karavaeva V.M., Olifan O.I., Radchuk S.V. Influence of magnetic field on electron transition across Fe, Co, Ni / Tb2O3 boundary in the presence of exchange f-d interaction. In: Proceedings of the VI International Conference NANSIS-2019. (December 4-6, 2019). P. 177.

Kasumov A.M., Shapoval K.O., Karavaeva V.M., Olifan O.I., Radchuk S.V. Influence of the f-d interaction on electron transfer through Fe, Co, Ni / Tb2O3 interface. In: Proceedings of the VI International Conference NANSIS-2019. (December 4-6, 2019). P. 179.

Dmitriev A.I., Kasumov A.M., Karavaeva V.M., Vyshnevska K.O., Fialka L.I., Korotkov K.A., Ievtushenko A.I. Magnetic properties of interfaces of nanofilm structures based on 3d metals. Nanosistemi, Nanomateriali, Nanotehnologii. 2021. 19(2): 231.

Dmitriev A.I., Vyshnevska K.O., Kasumov A.M., Fiyalka L.I., Korotkov K.A., Ievtushenko A.I. The surface magnetic properties in nanofilm structures. In: Ukrainian Conf. with int. participation: Chemistry, Physics and Technology of Surface. (21-22 Oct. 2020, Kyiv, Ukraine). P. 55.

Dmitriev O.I., Kasumov A.M., Karavaeva V.M., Vyshnevska K.O., Fiyalka L.I., Korotkov K.A., Ievtushenko A.I. Magnetic properties of interfaces for iron-based nanofilms. In: VI Int. Conf. HighMatTech. (28-30 October, 2019, Kiyv, Ukraine). P. 183.

Julliere M. Tunneling between ferromagnetic films. Phys. Lett. A. 1975. 54 (3): 255. https://doi.org/10.1016/0375-9601(75)90174-7

De Teresa I.M. Magnetoresistance phenomena in magnetic materials and device. esm.neel,cniz.fr/2005-contacta/abs/deteresa_abs.pdf

Andreeva A.F., Kasumov A.M., Dvoyneko O.K. Properties of polycrystalline films of magnetite Fe3O4. Modern problems of physical materials science. 2008. 17: 163. [in Russian].

Andreeva A.F., Kasumov A.M., Gavrilenko V.V. Magnetoresistance and polarization of electron spins in the Fe3O4 / Y2O3 / Fe3O4 nanostructure during DC operation. Nanostructural Materials Science. 2009. 18: 29. [in Russian].

Andreeva A.F., Kasumov A.M., Khrinovsky V.Z. Magneto-optical properties of thin films of Fe3O4 magnetite. Nanostructural Materials Science. 2012. 3: 29. [in Russian].

Andreeva A.F., Kasumov A.M., Khrinovsky V.Z., Karavaeva V.M. The Faraday effect in the thin-film structure of Fe3O4 / SnO2. In: VII Int. conf. "Materials and coatings under experimental conditions". (September 24-28, 2012, Crimea, Ukraine). P. 237. [in Russian].

Andreeva A.F., Kasumov A.M., Khrinovsky V.Z., Karavaeva V.M. High value of magneto-impedance obtained in Cu/Fe3O4/Y2O3/Fe3O4 nanostructure. In: 3rd Intern. conf. HighMatTech. (October 3-7, 2011, Kyiv, Ukraine). [in Russian].

Andreeva A.F., Kasumov A.M., Gavrilenko V.V. Properties of the Cu / Fe3O4 / Y2O3 / Fe3O4 nanostructure with polycrystalline magnetite layers. In: II-th Intern. Samson Conf. "Materials Science of Refractory Compounds". (May 18, 2010, Kyiv, Ukraine). [in Russian].




DOI: https://doi.org/10.15407/hftp13.04.434

Copyright (©) 2022 A. M. Kasumov, A. I. Dmitriev, K. A. Korotko, V. M. Karavaeva, K. O. Vyshnevska, A. I. Ievtushenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.