Хімія, фізика та технологія поверхні, 2011, 2 (1), 34-40.

Декорування вуглецевих нанотрубок оксидом церію (IV)



S. Ya. Brichka, I. B. Yanchuk, A. A. Konchits, S. P. Kolesnik, A. F. Yefanov, A. V. Brichka, M. T. Kartel

Анотація


Наночастинки оксиду церію (IV) розміром 6-10 нм одержано на вуглецевих нанотрубках (ВНТ) за хімічною реакцією між Се(NО3)3 і NaOH. Встановлено ефективні параметри синтезу наночастинок оксиду церію. Нанокомпозити ВНТ/СеО2 охарактеризовано за допомогою трансмісійної електронної мікроскопії (ТЕМ), електронографії, КР- та ЕПР-спектроскопії. Методами електронографії і КР-спектроскопії виявлено кубічну кристалічну структуру СеО2. ЕПР-спектроскопія показала, що два парамагнітних сигнали мають відношення до ВНТ, а третій обумовлений парамагнітними дефектами CeO2.

Повний текст:

PDF (English)

Посилання


Brichka S.Ya., Prikhod’ko G.P., Brichka A.V., Kislii Yu.A. Synthesis of bimodified carbon nanotubes – a nanocomposite material // Inorg. Mater. – 2004. – V. 40, N 12. – P. 1276–1279.

Brichka S.Ya., Prikhod’ko G.P., Brichka A.V. et al. Physicochemical properties of multilayer N-containing carbon nanotubes // Russ. J. Phys. Chem. – 2004. – V. 78, N 1. – P. 121–125.

Chen X.H., Chen C.S., Xiao H.N. et al. Corrosion behavior of carbon nanotubes–Ni composite coating // Surf. Coat. Technol. – 2005. – V. 191, N 2–3. – P. 351–356.

Praveen B.M., Venkatesha T.V., Arthoba Naik Y., Prashantha K. Corrosion studies of carbon nanotubes–Zn composite coating // Surf. Coat. Technol. – 2007. – V. 201, N 12. – P. 5836–5842.

Amirudin A., Thierry D. Evaluation of anti-corrosive pigments by pigment extract studies, atmospheric exposure and electrochemical impedance spectroscopy // Prog. Org. Coat. – 1995. – V. 25, N 4. – P. 339–355.

Phani A.R., Gammel F.J., Hack T., Haefke H. Enhanced corrosion resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys // Mater. Corros. – 2005. – V. 56, N 2. – P. 77–82.

Liu W., Cao F., Chang L. et al. Effect of rare earth element Ce and La on corrosion behaviour of AM60 magnesium alloy // Corros. Sci. – 2009. – V. 51, N 6. – P. 1334–1343.

Marban G.I., Valdes-Solıs T. Preferential oxidation of CO by CuOx/CeO2 nanocatalysts prepared by SACOP. Mechanisms of deactivation under the reactant stream // Appl. Catal. A. – 2009. – V. 361, N 1–2. – P. 160–169.

Roy S., Hegde M.S., Madras G. Catalysis for NOx abatement // Appl. Energy. – 2009. – V. 86, N 11. – P. 2283–2297.

Hirata Y., Terasawa Y., Matsunaga N., Sameshima S. Development of electrochemical cell with layered composite of the Gd-doped ceria/electronic conductor system for generation of H2–CO fuel through oxidation–reduction of CH4–CO2 mixed gases // Ceram. Int. – 2009. – V. 35, N 5. – P. 2023–2028.

Steele B.C.H. Fuel-cell technology: Running on natural gas // Nature. – 1989. – V. 400. – P. 619–621.

Di Z., Ding J., Li Y. et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles // Chemosphere. – 2006. – V. 62, N 5. – P. 861–865.

Colon J., Herrera L., Smith J. et al. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles // Nanomed. Nanotechnol. Biol. Med. – 2009. – V. 5, N 2. – P. 225–231.

Ghom S.A., Zamani C., Nazarpour S. et al. Oxygen sensing with mesoporous ceria–zirconia solid solutions // Sens. Actuators. B.– 2009. – V. 140, N 1. – P. 216–221.

Wang L., Zhang K., Song Zh., Feng S. Ceria concentration effect on chemical mechanical polishing of optical glass // Appl. Surf. Sci. – 2007. – V. 253, N 11. – P. 4951–4954.

Armini S., De Messemaeker J., Whelan C.M, et al. Composite polymer core–ceria shell abrasive particles during oxide cmp: A defectivity study // J. Electrochem. Soc. – 2008. – V. 155, N 9. – P. 653–660.

Park H.J., Kwak C., Lee K.H. et al. Interfacial protonic conduction in ceramics // J. Eur. Ceram. Soc. – 2009. – V. 29, N . – P. 2429–2437.

Yuan Q., Duan H., Li L. et al. Controlled synthesis and assembly of ceria-based nanomaterials // J. Colloid Interface Sci. – 2009. – V. 335, N 2. – P. 151–167.

Yanchuk I.B., Koval’s’ka E.O., Brichka A.V., Brichka S.Ya. Raman scattering studies of the influence of thermal treatment of multi-walled carbon nanotubes on their structural characteristics // Ukr. J. Phys. – 2009. – V. 54, N 4. – P. 407–412.

Weber W.H., Hass K.C., McBride J.R. Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects // Phys. Rev. B. – 1993. – V. 48, N 1. – P. 178–185.

Kosacki I., Suzuki T., Anderson H.U., Colomban Ph. Raman scattering and lattice defects in nanocrystalline CeO2 thin films // Solid State Ionics. – 2002. – V. 149, N 1–2. – P. 99–105.

Li Y., Ding J., Chen J. et al. Preparation of ceria nanoparticles supported on carbon nanotubes // Mater. Res. Bull. – 2002. – V. 37, N 2. – P. 313–318.

Wei J., Ding J., Wu D. et al. Coated double-walled carbon nanotubes with ceria nanoparticles // Mater. Lett. – 2005. – V. 59. – P. 322–325.

Zhang D., Shi L., Fu H., Fang J. Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites // Carbon. – 2006. – V. 44, N 13. – P. 2849–2867.

Nafradi B., Nemes N.M., Feher T. et al. Electron spin resonance of single-walled carbon nanotubes and related structures // Phys. Status Solidi. B. – 2006. – V. 243, N 13. – P. 3106–3110.

Beuneu F., l’Huillier C., Salvetat J.P. et al. Modification of multiwall carbon nanotubes by electron irradiation: An ESR study // Phys. Rev. B. – 1999. – V. 59. – P. 5945–5952.

Fabian J., Das Sarma S. Phonon-Induced Spin Relaxation of Conduction Electrons in Aluminum // Phys. Rev. Lett. – 1999. – V. 83. – P. 1211–1214.

Salvetat J.P., Feher T., L’Huillier C. et al. Electron spin resonance in alkali doped SWCNTs // Phys. Rev. B. – 2005. – V. 72. – P. 7544–7549.

Trovarelli A. Catalysis by ceria and related materials. – London: Imperial College Press, 2002. – 528 p.




Copyright (©) 2011 S. Ya. Brichka, I. B. Yanchuk, A. A. Konchits, S. P. Kolesnik, A. F. Yefanov, A. V. Brichka, M. T.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.