Хімія, фізика та технологія поверхні, 2011, 2 (2), 175-181.

Фізико-хімічні та електрохімічні властивості нанорозмірного Li[Li0,033Mn1,967]O4



A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, S. А. Kirillov

Анотація


Термічним розкладом цитратного прекурсора одержана літій-манганова шпінель складу Li[Li0,033Mn1,967]O4. Матеріал має розмір кристалітів <30 нм, питому поверхню біля 10 м2/г і діаметр пор близько 10–30 Å; кристаліти об’єднані в агрегати розміром 200–400 нм. Теоретична питома ємність Li[Li0,033Mn1,967]O4, розрахована при допущенні відсутності вакансій, становить 133 мА∙г/г, а експериментальна – 105–110 мА∙г/г. Електрохімічні дослідження зразків, відпалених при 700°С, як катодних матеріалів літій-іонних хімічних джерел струму свідчать про відсутність втрат розрядної ємності в інтервалі 100 циклів і про можливість розрядження електродів великими струмами. Зокрема, при густині струму 1480 мА/г (11,1 С) зворотна ємність, що знімається, складає біля половини теоретичної ємності матеріалу.

Повний текст:

PDF (Русский)

Посилання


Thackeray M.M., David W.I.F., Bruce P.G. Lithium insertion into manganese spinels // Mater. Res. Bull. – 1983. –V. 18, N 4. – P. 461–472.

Келлерман Д.Г., Горшков B.C. Структура, свойства и применение литий-марганцевых шпинелей // Электрохимия. – 2000. – Т. 37, № 12. – С. 1413–1423.

Махонина Е.В., Первов В.С., Дубасова В.С. Оксидные материалы положительного электрода литий-ионных аккумуляторов // Усп. химии. – 2004. – Т. 73, № 10. – С. 1075–1083.

Whittingham M.S. Lithium batteries and cathode materials // Chem. Rev. – 2004. – V. 104, N 10. – P. 4271–4301.

Thackeray M.M., Johnson P.J., de Piciotto L.A. et al. Electrochemical extraction of lithium from LiMn2O4 // Mater. Res. Bull. – 1984. – V. 19, N 2. – P. 179–184.

Rossouw M.H., de Kock A., de Piciotto L.A. et al. Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium // Mater. Res. Bull. – 1990. – V. 25, N 2. – P. 173–182.

Ohzuku T., Kitagawa M., Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell // J. Electrochem. Soc. – 1990. – V. 137, N 3. – P. 769–775.

Yamada A. Lattice instability in Li(LixMn2-x)O4 // J. Solid State Chem. – 1996. – V. 122, N 1. – P. 160–165.

Tarascon J.M., McKinnon W.R., Coowar F. et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4 // J. Electrochem. Soc. – 1994. – V. 141, N 6. – P. 1421–1431.

Tarascon J.M., Wang E., Shokoohi F.K. et al. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells // J. Electrochem. Soc. – 1991. – V. 138, N 10. – P. 2859–2864.

Xia Y., Yoshio M. An investigation of lithium ion insertion into spinel sfructure Li-Mn-O compounds // J. Electrochem. Soc. – 1996. – V. 143, N 3. – P. 825–833.

Aricò A.S., Bruce P., Scrosati B. et al. Nanostructured materials for advanced energy conversion and storage devices // Nat. Mater. – 2005. – V. 4, N 5. – P. 366–377.

Nikkan N., Munichandraiah N. The effect of particle size on performance of cathode materials of Li–ion batteries // J. Indian Inst. Sci. – 2009. – V. 89, N 4. – P. 381–392.

Park O.K., Cho Y., Lee S. et al. Who will drive electric vehicles, olivine or spinel? // Energy Environ. Sci. – 2011. – V. 4, N 5. – P. 1621–1633.

Liu W., Farrington C.C., Chaput F. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process // J. Electrochem. Soc. – 1996. – V. 143, N 3. – P. 879–884.

Hwang B.J., Santhanam R., Liu D.G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method // J. Power Sources. – 2001. – V. 97–98. – P. 443–446.

Hwang B.J., Santhanam R., Liu D.G. Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by sol-gel method at low temperature // J. Power Sources. – 2001. – V. 101, N 1. – P. 86–89.

Hwang B.J., Santhanam R., Hu S.G. Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1,02Co0,1Ni0,1Mn1,8O4 for rechargeable lithium batteries // J. Power Sources. – 2002. – V. 108, N 1–2. – P. 250–255.

Wang X., Chen X., Gao L. et al. Citric acid-assisted sol-gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material // J. Cryst. Growth. – 2003. –V.2 56, N 1–2. – P. 123–127.

Yi T., Dai C., Gao K., Hu X. Effect of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method, // J. Alloys Compd. –2006. –V. 425, N 1–2. – P. 343–347.

Фарбун И.А., Романова И.В., Териковская Т.Е. и др. Комплексообразование при синтезе оксида цинка из цитратных растворов // Журн. прикл. химии. – 2007. – Т. 80, № 11. – С. 1773–1778.

Романова И.В., Фарбун И.А., Хайнаков С.А. и др. Исследование каталитических свойств материалов на основе оксидов переходных металлов и церия // Доп. НАН України. – 2008. – № 10. – С. 153–158.

Фарбун И.А., Романова И.В., Хайнаков С.А., Кириллов С.А. Свойства наноразмерных материалов на основе оксидов марганца и церия, полученных из цитратных растворов // Поверхность. – 2010. – № 2(17). – С. 197–204.

Tobon-Zapata G.E., Ferrer E.G., Etcheverry S.B., Baran E.J. Thermal behaviour of pharmacologically active lithium compounds // J. Therm. Anal. Calorim. – 2000. – V. 61, N 1. – P. 29–35.

Kirillov S.A. Surface area and pore volume of a system of particles as a function of their size and packing // Microporous Mesoporous Mater. – 2009. – V. 122, N 1–3. – P. 234–239.




Copyright (©) 2011 A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, S. A. Kirillov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.