Influence of electron-phonon interaction on wannier–stark effect in macroporous silicon structures with SiO<sub>2</sub> nanocoatings

Authors

  • L. A. Karachevtseva Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
  • Yu. V. Goltviansky Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
  • O. Yu. Sapelnikova Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
  • O. O. Lytvynenko Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
  • O. I. Stronska Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15407/hftp05.01.003

Keywords:

Wannier–Stark ladders, broadening parameter, electron-phonon interaction, oxidized silicon, SiO2 nanocoatings

Abstract

We investigated the contribution of electron-phonon interaction to the broadening parameter of the Wannier–Stark ladders in oxidized macroporous silicon structures with different concentration of Si–O–Si states (TO and LO phonons). The obtained value of this parameter is much less than the Wannier–Stark ladder energy evaluated from giant oscillations of resonance electron scattering on the surface states of investigated structures. We determined the influence of broadening on the oscillation amplitude in IR absorption spectra as interaction of the surface multi-phonon polaritons with electrons and transformation of the resonance electron scattering in samples with low concentration of Si–O–Si states into ordinary scattering on ionized impurities for samples with high concentration of Si–O–Si states. The transformation takes place at the electron scattering lifetime coinciding with the period of electron oscillations in the presurface electric field.

References

1. Birner A. Wehrspohn R.B., Gösele U.M. Busch K. Silicon-based photonic crystals. Adv. Mater. 2001. 13(6): 377.https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X

2. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2004. 7(4): 430.

3. Glushko A., Karachevtseva L. Photonic band structure in oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9

4. Karachevtseva L., Onyshchenko V. Sachenko A. Photocarrier transport in 2D macroporous silicon structures. Opto-Electron. Rev. 2010. 18(4):394. https://doi.org/10.2478/s11772-010-0042-7

5. Glushko A., Karachevtseva L. PBG properties of three-component 2D photonic crystals. Photonics Nanostruct. Fundam. Appl. 2006. 4(3): 141 https://doi.org/10.1016/j.photonics.2006.02.003

6. Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 3328. https://doi.org/10.1016/j.apsusc.2008.09.038

7. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2010. 257(8): 3331.  https://doi.org/10.1016/j.apsusc.2010.11.016

8. Karachevtseva L.A., Kuchmii S.Ya., Konin K.P., Lytvynenko O.O., Stroyuk A.L. Room temperature Wannier–Stark effect in 2D macroporous silicon structures with nanocoatings. Him. Fiz. Tehnol. Poverhni. 2011. 2(2): 105.

9. Cullis A.G., Canham L.T., Calcott P.D.J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997. 82: 909. https://doi.org/10.1063/1.366536

10. Nickel N.H., Mei P., Boyce J.B. On the nature of the defect passivation in polycrystalline silicon by hydrogen and oxygen plasma treatments. IEEE Trans. Electron Devices. 1995. 42(8): 1559. https://doi.org/10.1109/16.398672

11. Harrick N.J. Internal Reflection Spectroscopy. (New York/London/Sydney: Interscience Publishers, 1967).

12. Milekhin A.G., Himcinschi C., Friedrich M., Hiller K., Wiemer M., Gessner T., Schulze S., Zahn D.R.T. Infrared spectroscopy of bonded silicon wafers. Semiconductors. 2006. 40(11): 1304. https://doi.org/10.1134/S1063782606110108

13. Queeney K.T., Weldon M.K., Chang J.P., Chabal Y.J., Gurevich A.B., Sapjeta J., Opila R.L. Infrared spectroscopic analysis of the Si/SiO2 interface structure of thermally oxidized silicon. J. Appl. Phys. 2000. 87: 1322. https://doi.org/10.1063/1.372017

14. Vinogradov E.A. Semiconductor microcavity polaritons. Physics-Uspekhi. 2002. 45(12): 1213. https://doi.org/10.1070/PU2002v045n12ABEH001189

15. Priox F., Balkanski M. Infrared measurements on CdS thin films deposited on aluminium. Phys. Status Solidi B. 1969. 32(1): 119. https://doi.org/10.1002/pssb.19690320114

16. Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. Sov. Phys. JETP. 1979. 50(3): 486.

17. Seraphin B.O., Bottka N. Band-structure analysis from electro-reflectance studies. Phys. Rev. 1966. 145: 628. https://doi.org/10.1103/PhysRev.145.628

18. Enderlein R. The Influence of collisions on Franz-Keldysh effect. Phys. Status Solidi B. 1967. 20(1): 295. https://doi.org/10.1002/pssb.19670200128

19. Vodopyanov L.K., Vinogradov E.A., Kolotkov V.V., Mityagin Yu.A. The optical properties of cadmium telluride in the far-IR. Sov. Phys. Solid State. 1974. 16: 1419.

Downloads

How to Cite

(1)
Karachevtseva, L. A.; Goltviansky, Y. V.; Sapelnikova, O. Y.; Lytvynenko, O. O.; Stronska, O. I. Influence of Electron-Phonon Interaction on wannier–stark Effect in Macroporous Silicon Structures With SiO<sub>2< sub> Nanocoatings. Him. Fiz. Tehnol. Poverhni 2014, 5, 3-9.