Хімія, фізика та технологія поверхні, 2016, 7 (2), 145-156.

Дослідження кремнезем-желатинових матеріалів методами ТГА і ТПДМС



DOI: https://doi.org/10.15407/hftp07.02.145

P. O. Kuzema, I. V. Laguta, O. N. Stavinskaya

Анотація


Желатинові плівки з масовим співвідношенням кремнезем:желатина 1:5 або 8:5, що містять гідрофільний або гідрофільно-гідрофобний кремнезем, було синтезовано і досліджено методами термогравіметричного аналізу і температурно-програмованої десорбційної мас-спектрометрії. Показано, що присутність кремнезему не впливає на механізм термічного розкладання желатини, однак впливає на кінетику її термолізу у вакуумі та на повітрі, включаючи підвищення енергії активації утворення летких продуктів при вмісті гідрофільного кремнезему близько 17 мас. %. Гідрофобізація поверхні кремнезему, а також збільшення концентрації гідрофільного кремнезему у плівці з 17 до 62 мас. % зменшують енергію активації утворення летких продуктів термолізу желатини. Цей ефект пояснено зменшенням зв’язування желатини з кремнеземом або внаслідок заміщення частини силанольних груп поверхні при частковій його гідрофобізації, або за рахунок переважання міжчастинкової взаємодії над взаємодією желатини з кремнеземом при більшій концентрації останнього.

Ключові слова


желатина; кремнезем; мас-спектрометрія; термогравіметричний аналіз; термоліз

Повний текст:

PDF (English)

Посилання


1. Young S., Wong M., Tabata Y., Mikos A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Controlled Release. 2005. 109(1–3): 256.  https://doi.org/10.1016/j.jconrel.2005.09.023

2. Duconseille A., Astruc T., Quintana N., Meersman F., Sante-Lhoutellie V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids. 2015. 43: 360.   https://doi.org/10.1016/j.foodhyd.2014.06.006

3. Santoro M., Tatara A.M., Mikos A.G. Gelatin carriers for drug and cell delivery in tissue engineering. J. Controlled Release. 2014. 190: 210.  https://doi.org/10.1016/j.jconrel.2014.04.014

4. Singh S., Rao K.V.R., Venugopal K., Manikandan R. Alteration in dissolution characteristics of gelatin-containing formulations. Pharm. Technol. 2002. 26(4): 36.

5. Stavinskaya O.N., Laguta I.V., Kuzema P.A. Effect of highly dispersed silica on water absorption of gelatin materials. Prot. Met. Phys. Chem. Surf. 2011. 47: 302.   https://doi.org/10.1134/s2070205111030154

6. Zatsepin A.F., Fotiev A.A., Dmitriev I.A. On the assessment of apparent activation energy of exothermic processes by the derivatographic data. Russ. J. Inorg. Chem. 1973. 18: 2883. [In Russian].

7. Kim W.I., Kim S.D., Lee S.B., Hong I.K. Kinetic characterization of thermal degradation process for commercial rubbers. J. Ind. Eng. Chem. 2000. 6(5): 348.

8. Pokrovskiy V.A. Temperature-programmed desorption mass spectrometry. J. Therm. Anal. Calorim. 2000. 62(2): 407. https://doi.org/10.1023/A:1010177813557

9. Burdygina G.I., Pron'kina Ye.V., Radugina Yu.Ye., Opel'boim V.V., Kozlov P.V. Effect of low molecular weight substances on the thermal resistance of gelatine. Polym. Sci. U.S.S.R. 1976. 18(6): 1612.   https://doi.org/10.1016/0032-3950(76)90365-8

10. Bhaskar G., Ford J.L., Hollingsbee D.A. Thermal analysis of the water uptake by hydrocolloids. Thermochim. Acta. 1998. 322(2): 153. https://doi.org/10.1016/S0040-6031(98)00493-6

11. Apostolov A.A., Fakirov S., Vassileva E., Patil R.D., Mark J.E. DSC and TGA studies of the behavior of water in native and cross-linked gelatin. J. Appl. Polym. Sci. 1999. 71(3): 465.   https://doi.org/10.1002/(SICI)1097-4628(19990118)71:3<465::AID-APP13>3.0.CO;2-1

12. Liu W.G., Li F., De Yao K. Thermal and NMR investigation of the change in the states of water caused by volume phase-transition of gelatin gel. Polym. Int. 2000. 49: 1624.    https://doi.org/10.1002/1097-0126(200012)49:12<1624::AID-PI567>3.0.CO;2-0




DOI: https://doi.org/10.15407/hftp07.02.145

Copyright (©) 2016 P. O. Kuzema, I. V. Laguta, O. N. Stavinskaya