Chemistry, Physics and Technology of Surface, 2013, 4 (4), 427-436.

Influence of inertia on passive and active nanoparticles transport along the interface



T. E. Korochkova, I. V. Shapochkina, V. M. Rozenbaum

Abstract


We consider the drift of a Brownian particle in a periodic potential of the substrate under the stationary force longitudinal to the surface (passive transport) and under a variable force with the zero mean value (active transport), taking into account inertial effects. Calculations of the average velocity and the effective diffusion coefficient indicate that inertial effects always play a destructive role in the passive transport of nanoparticles, whereas in the case of active transport they may increase the average velocity and play a constructive role in the high-temperature region when the thermal energy of the particle is larger than the energy barrier of the near-surface potential.

Keywords


Brownian particle; periodic potential; passive transport; active transport; inertial effects

Full Text:

PDF (Русский)

References


1. Зубарев Д.Н., Морозов В.Г., Рёпке Г. Статистическая механика неравновесных процессов. − Москва: Физико-математическая литература, 2002. − 432 с.

2. Bressloff P.C., Newby J.M. Stochastic models of intracellular transport // Rev. Mod. Phys. – 2013. – V. 85, N 1. – P. 135–196.

3. Reimann P. Brownian Motors: Noisy Transport far from Equilibrium // Phys. Rep. – 2002. – V. 361. – P. 57–265.

4. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale // Rev. Mod. Phys. – 2009. – V. 81, N 1. – P. 387–442.

5. Seebauer H.P.E.G., Jung M.Y.L. Surface diffusion on metals, semiconductors, and insulators // Physics of covered solid surfaces / Ed. by H.P. Bonzel. – Berlin: Springer, 2001.  – Ch. 3.11.

6. Oura K., Katayama M., Zotov A.V. et al. Elementary Processes at Surfaces II. Surface Diffusion / Surface Science Advanced Texts in Physics. – 2003. – P. 325–356.

7. Lifson S. On the Self Diffusion of Ions in a Polyelectrolyte Solution / S. Lifson, J.L. Jackson // J. Chem. Phys. – 1962. – V. 36. – P. 2410–2414.

8. Riskin H. The Fokker-Plank Equation. Methods of Solution and Applications. – Berlin: Springer-Verlag, 1989. – 288 p.

9. Rozenbaum V.M., Makhnovskii Yu.A., Shapochkina I.V. et al. Adiabatically slow and adiabatically fast driven ratchets // Phys. Rev. E. – 2012. – V. 85, N 4. – P. 041116(1–5).

10. Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical reactions // Physica. – 1940. – V. 7, N 4. – P. 284–304.

11. Hänggi P., Talkner P., Borkovec M. Reaction-rate theory: fifty years after Kramers // Rev. Mod. Phys. – 1990. – V. 62, N 2. – P. 251–342.

12. Wilemski G. On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion // J. Stat. Phys. – 1976. – V. 14. – P. 153–169.

13. Корочкова Т.Е., Розенбаум В.М., Чуйко А.А. Дрейф броуновской частицы, обусловлен-ный ориентационным структурированием адсорбата // Доп. НАН України. – 2004. – № 8. – С. 93–98.

14. Magnasco M.O. Forsed thermal ratchets // Phys. Rev. Lett. – 1993. – V. 71, N 10. – P. 1477–1481.

15. Sokolov I.M. Irreversible and reversible modes of operation of deterministic ratchets // Phys. Rev. E. – 2001. – V. 63, N 2. – P. 021107(1–6).

16. Rozenbaum V.M., Korochkova T.Ye., Liang K.K. Conventional and generalized efficiencies of flashing and rocking ratchets: Analytical comparison of high-efficiency limits // Phys. Rev. E. – 2007. – V. 75, N 6. – P. 061115(1–5).




Copyright (©) 2013 T. E. Korochkova, I. V. Shapochkina, V. M. Rozenbaum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.