Chemistry, Physics and Technology of Surface, 2014, 5 (4), 415-420.

Biomimetic Hydroxyapatite Formation on Titanium Surface in Simulated Body Fluids of Different Chemical Composition



DOI: https://doi.org/10.15407/hftp05.04.415

Ie. V. Pylypchuk, A. L. Petranovska, O. I. Oranska, P. P. Gorbyk

Abstract


A method has been developed of biomimetic hydroxyapatite (HA) biocompatible functional layer synthesis on the surface of the models of titanium articles of biomedical applications. Carboxyl-modified titanium surface acts as active nucleation site in biomineralization processes of HA synthesis which occurs in simulated body fluids (SBF) of different composition. A comparative study has been conducted on the influence of thermal conditions on the formation of HA in SBF of different chemical composition. The formation of hydroxyapatite coating on the surface of titanium has been confirmed by FTIR spectroscopy and XRD.

Keywords


biomimetic hydroxyapatite; titanium plates; surface modification; simulated body fluid

Full Text:

PDF

References


1. Visan G., D., Stefan N., Duta L., Miroiu F.M., Stan G.E., Sopronyi M., Luculescu C., Freche M., Marsan O., Charvillat C., Ciuca S., Mihailescu I.N. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications. Mater. Sci. Eng, B. 2014. 181: 56.  https://doi.org/10.1016/j.mseb.2013.11.007

2. Mohseni E., Zalnezhad E., Bushroa R. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. Int. J. Adhes. Adhes. 2014. 48: 238.  https://doi.org/10.1016/j.ijadhadh.2013.09.030

3. Fratzl P. Biomimetic materials research: what can we really learn from nature's structural materials. J. R. Soc. Interface. 2007. 4(15): 637.  https://doi.org/10.1098/rsif.2007.0218

4. Schönhoff M. Self-assembled polyelectrolyte multilayer's. Curr. Opin. Colloid Interface Sci. 2003. 8: 86.  https://doi.org/10.1016/S1359-0294(03)00003-7

5. Hirata I., Akamatsu M., Fujii E., Poolthong S., Okazaki M. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH2, CH3, and OH functions. Dent. Mater. J. 2010. 29(4): 438.  https://doi.org/10.4012/dmj.2010-017

6. Xia Z., Yu X., Jiang X., Brody H.D., Rowe D.W., Wei M. Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 2013. 9(7): 7308.   https://doi.org/10.1016/j.actbio.2013.03.038

7. Ciobanu G., Ciobanu O. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces. Mater. Sci. Eng, C. 2013. 33(3): 1683.   https://doi.org/10.1016/j.msec.2012.12.080

8. Dinçer M., Teker D., Sağ C.P., Öztürk K. Enhanced bonding of biomimetic apatite coatings on surface-modified titanium substrates by hydrothermal pretreatment. Surf. Coat. Tech. 2013. 226: 27.  https://doi.org/10.1016/j.surfcoat.2013.03.032

9. Meng-Hui Chi, Hsi-Kai Tsou, Chi-Jen Chung, Ju-Liang He. Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. Thin Solid Films. 2013. 549: 98.   https://doi.org/10.1016/j.tsf.2013.06.063

10. Jalota S., Bhaduri S.B., Tas A.C. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J. Mater. Sci. Mater. Med. 2006. 17(8): 697.  https://doi.org/10.1007/s10856-006-9680-1

11. Petranovska A.L., Turelyk M.P., Pylypchuk Ie.V., Gorbik P.P., Korduban A.M., Ivasishin O.M. Biomimetic formation of hydroxyapatite on titanium surface. Metallofiz. Noveishie Tekhnol. 2013. 35(11): 1567.

12. Tadic D., Peters F., Epple M. Continuous synthesis of amorphous carbonated apatite. Biomaterials. 2003. 23(12): 2553.  https://doi.org/10.1016/S0142-9612(01)00390-8




DOI: https://doi.org/10.15407/hftp05.04.415

Copyright (©) 2014 Ie. V. Pylypchuk, A. L. Petranovska, O. I. Oranska, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.