Chemistry, Physics and Technology of Surface, 2015, 6 (3), 372-379.

Influence of noncontact dispergation of carbon nanotubes on the electrophysical properties of composites containing polychlorotrifluoroethylene



DOI: https://doi.org/10.15407/hftp06.03.372

S. M. Makhno

Abstract


The dependence of the real ε' and imaginary ε" constituents of complex dielectric permittivity of polychlorotrifluoroethylene–carbon nanotubes (CNT) systems in the content range 0.0025–0.05 (volume fraction) before and after noncontact dispergation treatment have been investigated. It has been shown that the values ε' and ε" are 1.5 times higher in the region of ultra-high frequencies for the composites containing CNT treated by noncontact dispergation in comparison with non-treated materials whereas the percolation threshold is 3 times lower in the region of low frequencies.

Keywords


carbon nanotubes; polychlorotrifluoroethylene; dielectric permittivity; percolation threshold; conductivity

Full Text:

PDF (Українська)

References


1. Badamshina E. R., Gafurova M. P., Estrin Ya. I. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russ. Chem. Rev. 2010. 11(79): 1027. https://doi.org/10.1070/rc2010v079n11abeh004114

2. Bogatyreva G.P., Ilnitskaya G.D. Physical and chemical properties of carbon nantubes. High Pressure Physics and Techniques. 2013. 23(2): 34. [in Russian].

3. Bazaly G.A., Ilnitskaya G.D., Oleynik N.A. The investigation of adsorption activity of functionalized powders of carbon materials. Prog. Technol. Eng. Sys. 2013. 1–2: 42 [in Ukrainian].

4. Koval’chuk A.V., Bezhenar Yu.V., Vovk V.E., Ksendzenko A.I. Dielectric studies of dispersions of carbon nanotubes in liquid crystals 6CBHT. Science-Based Technologies. 2009. 3–4: 91 [in Ukrainian].

5. Abdrahimov R.R., Sapozhnikov S.B., Sinicyn N.V. Research rheology of suspensions for effective dispersion of multi-walled carbon nanotubes in an epoxy resin. Bulletin of the South Ural State University. Ser Math., Mech., Physics. 2012. 34(7): 68 [in Russian].

6. Koval’ska E.O., Kartel M.T., Prikhod’ko G.P., Sementsov Yu.I. Physical and chemicals of parification methods for carbon nanotubes (review). Him. Fiz. Tehnol. Poverhni. 2012. 3(1): 20 [in Russian].

7. Bulavin L.A., Savenko V.S., Lebovka N.I., Kuklin A.I., Soloviov D.V., Ivankov O.I. Small-angle neutron scattering of multiwalled carbon nanotubes in aqueous suspensions. In presence of laponite platelets or cetyltrimethylammonium bromide. Nuclear Physics and Atomic Energy. 2013. 14(4): 372.

8. Patent Russian Federation Ru2100082. Shostak V.V., Kulakov M.P. Method of grinding material and energy flows in a vortex grinding unit. 14.05.1996.

9. Koval’ska E.O., Sementsov Yu.I., Kartel M.T., Prikhod’ko G.P. synthesis of catalysts for growth of carbon nanotubes and testing their effectiveness. Chem. Phys. Technol. Surf. 2012. 3(3): 335 [in Ukrainian].

10. Ganiuk L.N., Ignatkov V.D., Makhno S.N., Soroka P.N. Study of dielectric properties of the fibrous material.Ukr. Phys. J. 1995. 40(6): 627.

11. Luscheykin G.A. Methods for Studying the Electrical Properties of Polymers. (Moscow: Khimiya, 1988).




DOI: https://doi.org/10.15407/hftp06.03.372

Copyright (©) 2015 S. M. Makhno

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.