Chemistry, Physics and Technology of Surface, 2021, 12 (1), 67-78.

Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries



DOI: https://doi.org/10.15407/hftp12.01.067

S. P. Kuksenko, H. O. Kaleniuk, Yu. O. Tarasenko, M. T. Kartel

Abstract


Even partial replacement of graphite in the anode of lithium-ion batteries with silicon can significantly increase their specific energy. But the issue is the insufficient life cycle of such batteries due to the accelerated degradation of the liquid organic electrolyte with traditional lithium hexafluorophosphate, especially at elevated temperatures. The subject of discussions and further research are the processes involving a natural oxide layer on the surface of silicon in the manufacture and electrochemical litiation–delitiation of Si-containing electrodes. Among the most promising areas for solving the issues of practical application of silicon are new additives to the electrolyte and polymeric binders for electrode masses. This paper demonstrates the capability of trimethylsilylisocyanate (with aminosilane and isocyanate functional groups) as an additive to a liquid organic electrolyte (LiPF6 / fluoroethylene carbonate + ethyl methyl carbonate + vinylene carbonate + ethylene sulfite) to scavenge the reactive HF and PF5 species that alleviates the thermal decomposition of fluoroethylene carbonate at elevated temperatures. This makes it possible to increase the electrochemical parameters of half-cells with a hybrid graphite–nanosilicon working electrode when using water-based binders – carboxymethylcellulose and styrene-butadiene rubber. The addition of trimethylsilylisocyanate in the electrolyte significantly improves the reversible capacity of hybrid electrodes and reduces the accumulated irreversible capacity during prolonged cycling at normal temperature and after exposure at 50 °C, therefore to be effective for use in high-energy lithium-ion batteries.


Keywords


nanosilicon; synthetic graphite; water-based polymeric binders; lithium hexafluorophosphate; fluoroethylene carbonate; liquid organic electrolytes; electrolyte additives; lithium-ion batteries

Full Text:

PDF (Українська)

References


1. Zeng X., Li M., Abd El-Hady D., Alshitari W., Al-Bogami A.S., Lu J., Amine K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019. 9(27): 1900161. https://doi.org/10.1002/aenm.201900161

2. Yuca N., Taskin O.S., Arici E. An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage. 2020. 2(1): e94. https://doi.org/10.1002/est2.94

3. Sturm J., Rheinfeld A., Zilberman I., Spingler F.B., Kosch S., Frie F., Jossen A. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging. J. Power Sources. 2019. 412: 204. https://doi.org/10.1016/j.jpowsour.2018.11.043

4. https://datasheetspdf.com/pdf-file/974431/Panasonic/NCR18650BF/1.

5. Willenberg L.K., Dechent Ph., Fuchs G., Sauer D.U., Figgemeier E. High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges. Sustainability. 2020. 12(2): 557. https://doi.org/10.3390/su12020557

6. Anseán D., Baure G., González M., Cameán I., García A.B., Dubarry M. Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. J. Power Sources. 2020. 459: 227882. https://doi.org/10.1016/j.jpowsour.2020.227882

7. Choi J. W., Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Rev. Mater. 2016. 1(4): 16013. https://doi.org/10.1038/natrevmats.2016.13

8. Manthiram A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017. 3(10): 1063. https://doi.org/10.1021/acscentsci.7b00288

9. Schmuch R., Wagner R., Horpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy. 2018. 3(4): 267. https://doi.org/10.1038/s41560-018-0107-2

10. Cano Z.P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z. Batteries and fuel cells for emerging electric vehicle markets. Nature Energy. 2018. 3(4): 279. https://doi.org/10.1038/s41560-018-0108-1

11. Marinaro M., Bresser D., Beyer E., Faguy P., Hosoi K., Li H., Sakovica J., Amine K., Wohlfahrt-Mehrens M., Passerini S. Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources. 2020. 459: 228073. https://doi.org/10.1016/j.jpowsour.2020.228073

12. Plakhotnyk A.V., Ernst L., Schmutzler R. Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O. J. Fluorine Chemistry. 2005. 126(1): 27. https://doi.org/10.1016/j.jfluchem.2004.09.027

13. Yang H., Zhuang G.V., Ross P.N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources. 2006. 161(1): 573. https://doi.org/10.1016/j.jpowsour.2006.03.058

14. Lux S.F., Lucas I.T., Pollak E., Passerini S., Winter M., Kostecki R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun. 2011. 14(1): 47. https://doi.org/10.1016/j.elecom.2011.10.026

15. Stich M., Göttlinger M., Kurniawan M., Schmidt U., Bund A. Hydrolysis of LiPF6 in Carbonate-Based Electrolytes for Lithium-Ion Batteries and in Aqueous Media. J. Phys. Chem. C. 2018. 122(16): 8836. https://doi.org/10.1021/acs.jpcc.8b02080

16. Wang K.-X., Li X.-H., Chen J.-S. Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries. Adv. Mater. 2015. 27(3): 527. https://doi.org/10.1002/adma.201402962

17. Cui X., Tang F., Zhang Y., Li C., Zhao D., Zhou F., Li S., Feng H. Influences of Trace Water on Electrochemical Performances for Lithium Hexafluorophosphate- and Lithium Bis(oxalato)borate-Based Electrolytes. Electrochim. Acta. 2018. 273: 191. https://doi.org/10.1016/j.electacta.2018.03.138

18. Xiong D.J., Petibon R., Madec L., Hall D.S., Dahn J.R. Some Effects of Intentionally Added Water on LiCoO2/Graphite Pouch Cells. J. Electrochem. Soc. 2016. 163(8): A1678. https://doi.org/10.1149/2.0901608jes

19. Kuksenko S.P., Tarasenko Yu.O., Kovalenko I.O., Kartel M.T. A carbon coating of micro- and nanosilicon: progress of silicon anode materials for lithium-ion batteries. Himia, Fizika i Tehnologia Poverhnosti (Int.-inst. coll. papers. Kyiv: Naukova dumka. 2009). 15: 144. [in Russian].

20. Kuksenko S.P., Kovalenko I.O. Silicon Nanopowder as Active Material for Hybrid Electrodes of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2011. 84(7): 1179. https://doi.org/10.1134/S107042721107010X

21. Yoshida S., Masuo Y., Shibata D., Haruta M., Doi T., Inaba M. Adsorbed Water on Nano-Silicon Powder and Its Effects on Charge and Discharge Characteristics as Anode in Lithium-Ion Batteries. J. Electrochem. Soc. 2017. 164(1): A6084. https://doi.org/10.1149/2.01111701jes

22. Kuksenko S.P., Kaleniuk H.O., Tarasenko Yu.O., Kartel M.T. Stable silicon electrodes with polyvinilidenfluoride-binder for lithium-ion batteries. Him. Fiz. Tehnol. Poverhn. 2020. 11(1): 58. [in Ukrainian]. https://doi.org/10.15407/hftp11.01.058

23. Han B., Liao C., Dogan F., Trask S.E., Lapidus S.H., Vaughey J.T., Key B. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca). ACS Appl. Mater. Interfaces. 2019. 11(33): 29780. https://doi.org/10.1021/acsami.9b07270

24. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Forming a Stable Amorphous Phase in the Carbon-Coated Silicon upon Deep Electrochemical Lithiation. Him. Fiz. Tehnol. Poverhn. 2010. 1(1): 57. [in Russian].

25. Kuksenko S.P. Silicon Electrodes for Lithium-Ion Batteries: Ways of Cycling Parameters Improving. Fundamental problems of energy conversion in lithium electrochemical systems / Ed.: M.S. Pleshakov. Novocherkassk: SRSTU (NPI). 2010. 147. [in Russian].

26. Kuksenko S.P. Cycling Parameters of Silicon Anode Materials for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(4): 641. https://doi.org/10.1134/S1070427210040130

27. Kuksenko S. P., Kovalenko I. O. Synthesis of a Silicon-Graphite Composite for the Hybrid Electrode of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(10): 1811. https://doi.org/10.1134/S1070427210100149

28. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Nanocomposite Silicon-Carbon for Hybrid Electrodes of Lithium-Ion Batteries. Voprosy Khimii i Khimicheskoi Tekhnologii. 2011. 4(1): 299. [in Russian].

29. Kuksenko S.P. Aluminum Foil as Anode Material of Lithium-Ion Batteries: Effect of Electrolyte Compositions on Cycling Parameters. Russ. J. Electrochem. 2013. 49(1): 67. https://doi.org/10.1134/S1023193512110080

30. Nakai H., Kubota T., Kita A., Kawashima A. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes. J. Electrochem. Soc. 2010. 158(7): A798. https://doi.org/10.1149/1.3589300

31. Etacheri V., Haik O., Goffer Y., Roberts G.A., Stefan I.C., Fasching R., Aurbach D. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery anodes. Langmuir. 2012. 28(1): 965. https://doi.org/10.1021/la203712s

32. Elazari R., Salitra G., Gershinsky G., Garsuch A., Panchenko A., Aurbach D. Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethylene Carbonate (FEC) as a Critically Important Component. J. Electrochem. Soc. 2012. 159(9): A1440. https://doi.org/10.1149/2.029209jes

33. Lin Y.-M., Klavetter K.C., Abel P.R., Davy N.C., Snider J.L., Heller A., Mullins B. High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries. Chem. Commun. 2012. 48(58): 7268. https://doi.org/10.1039/c2cc31712e

34. Bareño J., Shkrob I.A., Gilbert J.A., Klett M., Abraham D.P. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes. J. Phys. Chem. C. 2017. 121(38): 20640. https://doi.org/10.1021/acs.jpcc.7b06118

35. Ma L., Glazier S.L., Petibon R., Xia J., Peters J.M., Liu Q., Allen J., Doig R.N.C., Dahn J.R. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. J. Electrochem. Soc. 2017. 164(1): A5008. https://doi.org/10.1149/2.0191701jes

36. Kuksenko S.P. Silicon-Containing Anodes with High Capacity Loading for Lithium-Ion Batteries. Russ. J. Electrochem. 2014. 50(6): 537. https://doi.org/10.1134/S1023193514060068

37. Xu C., Lindgren F., Philippe B., Gorgoi M., Björefors F., Edström K., Gustafsson T. Improved Performance of the Silicon Anode for Li-Ion Batteries: Unerstanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chem. Mater. 2015. 27(7): 2591. https://doi.org/10.1021/acs.chemmater.5b00339

38. Eshetu G.G., Figgemeier E. Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem. 2019. 12(12): 2515. https://doi.org/10.1002/cssc.201900209

39. Aupperle F., Von Aspern N., Berghus D., Weber F., Eshetu G.G., Winter M., Figgemeier E. The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery. ACS Appl. Energy Mater. 2019. 2(9): 6513. https://doi.org/10.1021/acsaem.9b01094

40. Kim K., Ma H., Park S., Choi N.-S. Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges. ACS Energy Lett. 2020. 5(5): 1537. https://doi.org/10.1021/acsenergylett.0c00468

41. Son H. B., Shin M., Song W.-J., Han D.-Y., Choi S., Cha H., Nam S., Cho J., Choi S., Yoo S., Park S. A Dry Room-Free High-Energy Density Lithium-ion Batteries Enabled by Impurity Scavenging Separator Membrane. Energy Storage Materials. 2021. 36: 355. https://doi.org/10.1016/j.ensm.2021.01.018

42. Ryu Y.-G., Lee S., Mah S., Lee D.J., Kwon K., Hwang S., Doo S. Electrochemical Behaviors of Silicon Electrode in Lithium Salt Solution Containing Alkoxy Silane Additives. J. Electrochem. Soc. 2008. 155(8): A583. https://doi.org/10.1149/1.2940310

43. Patnaik S.G., Jayakumar T.P., Sawamura Y., Matsumi N. Defined Poly(borosiloxane) as an Artificial Solid Electrolyte Interphase Layer for Thin-Film Silicon Anodes. ACS Appl. Energy Mater. 2021. https://dx.doi.org/10.1021/acsaem.0c02749. https://doi.org/10.1021/acsaem.0c02749

44. Wu X., Wang Z., Li X., Guo H., Zhang Y., Xiao W. Effect of lithium difluoro(oxalate)borate and heptamethyl disilazane with different concentrations on cycling performance of LiMn2O4. J. Power Sources. 2012. 204: 133. https://doi.org/10.1016/j.jpowsour.2011.12.012

45. Kim C.-K., Shin D.-S., Kim K.-E., Shin K., Woo J.-J., Kim S., Hong S.Y., Choi N.-S. Fluorinated Hyperbranched Cyclotriphosphazene Simultaneously Enhances the Safety and Electrochemical Performance of High-Voltage Lithium-Ion Batteries. ChemElectroChem. 2016. 3(6): 913. https://doi.org/10.1002/celc.201600025

46. Han J.-G., Jeong M.-Y., Kim K., Park C., Sung C.H., Bak D.W., Kim K.H., Jeong K.-M., Choi N.-S. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources. 2020. 446: 227366. https://doi.org/10.1016/j.jpowsour.2019.227366

47. Nölle R., Achazi A.J., Kaghazchi P., Winter M., Placke T. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells. ACS Appl. Mater. Interfaces. 2018. 10(33): 28187. https://doi.org/10.1021/acsami.8b07683

48. Kuksenko S.P. Cycling Parameters of MAG Graphite as Anode Material for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(4): 648. https://doi.org/10.1134/S1070427210040142

49. Xia J., Aiken C.P., Ma L., Kim G.Y., Burns J.C., Chen L.P., Dahn J.R. Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni1/3Mn1/3Co1/3)O2/Graphite Pouch Cells. J. Electrochem. Soc. 2014. 161(6): A1149. https://doi.org/10.1149/2.108406jes

50. Kuksenko S.P. Irreversible capacity losses upon lithium insertion/extraction in graphite-silicon electrodes. Himia, Fizika i Tehnologia Poverhnosti (Int.-inst. coll. papers. Kyiv: Naukova dumka. 2008). 14: 123. [in Russian].

51. Touidjine A., Morcrette M., Courty M., Davoisne C., Lejeune M., Mariage N., Porcher W., Larcher D. Partially Oxidized Silicon Particles for Stable Aqueous Slurries and Practical Large-Scale Making of Si-Based Electrodes. J. Electrochem. Soc. 2015. 162(8): A1466. https://doi.org/10.1149/2.0301508jes

52. Hays K.A., Key B., Li J., Wood D.L., Veith G.M. Si Oxidation and H2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes. J. Phys. Chem. C. 2018. 122(18): 9746.  https://doi.org/10.1021/acs.jpcc.8b01062

53. Philippe B., Dedryvère R., Gorgoi M., Rensmo H., Gonbeau D., Edström K. Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries - A Photoelectron Spectroscopy Study. Chem. Mater. 2013. 25(3): 394. https://doi.org/10.1021/cm303399v

54. Mitra A., Rimstidt J.D. Solubility and Dissolution Rate of Silica in Acid Fluoride Solutions. Geochim. Cosmochim. Acta. 2009. 73: 7045. https://doi.org/10.1016/j.gca.2009.08.027

55. Ma L.A., Naylor A.J., Nyholm L., Younesi R. Strategies of mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 2021. https://doi.org/10.1002/anie.202013803

56. Huang S., Ren J., Liu R., Yue M., Huang Y., Yuan G. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res. 2018. 42(3): 919. https://doi.org/10.1002/er.3826

57. Bresser D., Buchholz D., Moretti A., Varzi A., Passerini S. Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018. 11: 3096. https://doi.org/10.1039/C8EE00640G




DOI: https://doi.org/10.15407/hftp12.01.067

Copyright (©) 2021 S. P. Kuksenko, H. O. Kaleniuk, Yu. O. Tarasenko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.