Chemistry, Physics and Technology of Surface, 2016, 7 (2), 157-166.

Structure and properties of hexagonal carbon nanoclusters C95N of graphene-like structure



DOI: https://doi.org/10.15407/hftp07.02.157

O. S. Karpenko, V. V. Lobanov, M. T. Kartel

Abstract


The ideal multi-layered graphene, consisting of sp2-hybridized carbon atoms, has a sufficiently high chemical inertness with zero band gap. To change its physical and chemical properties, i.e. to increase reactivity and (or) to obtain a predetermined band gap, typically one has to transfer to carbon nanoclusters (CNC) with finite-size graphene structure; to create an ordered mono- or polyatomic vacancy system; to form so-called rippers; to produce substitution of one or more carbon atoms with electron donor or electron acceptor ones. You can combine several or all of these approaches.

It has been shown that the hexagon-shaped CNC C96 allows us to convey all the properties of objects of this kind. It has just been chosen as the base in the study on the properties of nitrogen doped CNC (CNC-N).

The equilibrium spatial structure, the electronic structure and  the density distribution of single-electron energy levels of hexagon-shaped carbon nanoclusters С 95N of grapheme-like structure have been calculated by means of density functional theory method (B3LYP, basis set 6-31 G**). It has been found as follows:

– the electronic ground states of odd electron isomers CNC-N C95N, in some cases, depending on the position of the nitrogen atom, is not a doublet;

– the most stable C95N clusters are those where the nitrogen atom occupies the pyridinic position in zigzag edges;

– equilibrium configurations of considered CNC-N C95N have characteristic features inherent in those of the original cluster C96;

– the value of the chemical shift of core level N1s is the lowest for the pyridinic position of nitrogen atom and increases with distance of substituting nitrogen atom from the zigzag edge that corresponds to the experimentally found regularities of its connection with the effective charge on the nitrogen atom.


Keywords


density functional theory; carbon nanoclusters; hexagon-shaped carbon nanoclusters; nanoclusters С95N; chemical shift

Full Text:

PDF (Русский)

References


1. Abergel D.S.L., Apalkov V., Berashevich J., Ziegler K., Chakraborty T. Properties of graphene: a theoretical perspective. Adv. Phys. 2010. 59(4): 261. https://doi.org/10.1080/00018732.2010.487978

2. Barnarda A.S., Snook I.K. Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 2010. 20: 10459. https://doi.org/10.1039/c0jm01436b

3. Lehtinen P.O., Foster A.S., Yuchen Ma, Krasheninnikov A.V., Nieminen R.M. Irradiation-Induced Magnetism in Graphite: A Density Functional Study. Phys. Rev. Lett. 2004. 93(18): 187202. https://doi.org/10.1103/PhysRevLett.93.187202

4. Amara H., Latil S., Meunier V., Ph. Lambin, Charlier J.-C. Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction. Phys. Rev. B. 2007. 76: 115423. https://doi.org/10.1103/PhysRevB.76.115423

5. Barnarda Amanda S., Snook Ian K. Ripple induced changes in the wavefunction of graphene: an example of a fundamental symmetry breaking. Nanoscale. 2012. 4: 1167. https://doi.org/10.1039/C1NR11049G

6. Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, Gui Yu. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and its Electrical Properties. Nano Lett. 2009. 9(5): 1752. https://doi.org/10.1021/nl803279t

7. Sawada K., Ishii F., Saito M., Okada S., Kawai T. Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism. Nano Lett. 2009. 9(1): 269. https://doi.org/10.1021/nl8028569

8. Dai Y., Long H., Wang X., Wang Y., Gu Q., Jiang W., Wang Y., Li C., Zeng T.H., Sun Y., Zeng J. Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 2014. 31: 597. https://doi.org/10.1002/ppsc.201300268

9. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 1996. 54(24): 17954. https://doi.org/10.1103/PhysRevB.54.17954

10. Brey L., Fertig H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B. 2006. 73: 235411 https://doi.org/10.1103/PhysRevB.73.235411

11. Niimi Y., Matsui T., Kambara H., Tagami K., Tsukada M., Fukuyama Hiroshi. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 2006. 73: 085421. https://doi.org/10.1103/PhysRevB.73.085421

12. Kobayashi Y., Fukui K., Enoki T., Kusakabe K. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B. 2006. 73: 125415. https://doi.org/10.1103/PhysRevB.73.125415

13. Karpenko O.S., Lobanov V.V., Kartel N.T. Properties of hexagon-shaped carbon nanoclusters. Him. Fiz. Tehnol. Poverhni. 2013. 4(2): 123. https://doi.org/10.15407/hftp04.02.123

14. Karpenko O.S., Lobanov V.V., Kartel N.T. Structure and Properties Carbon Hexagonal Nanoclusters Containing One and Two Single Vacancies. Poverkhnya (Surface). 2013. 5: 5. [in Russian].

15. Parr R.G., Yang W. Density-functional theory of atoms and molecules. (Oxford: Oxford Univ. Press., 1989).

16. Becke A.D. Density-functional thermochemistry. III. The role of exchange. J. Chem. Phys. 1993. 98: 5648. https://doi.org/10.1063/1.464913

17. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of theelectron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

18. Usachov D.Y., Fedorov A.V., Vilkov O.Y., Senkovski B.V., Adamchyk V.K. Synthesis and electronic structure of graphene doped with nitrogen atoms. Solid State Phys. 2013. 55(6): 1231. [in Russian]. https://doi.org/10.1134/S1063783413060310

19. Chemical encyclopedia. V. 3. (Moscow: Sovietskaya encyclopedia, 1992).

20. Neiland O.Y. Organic Chemistry. (Moscow: Vishaya shkola, 1990). [in Russian].

21. Drago R.S. Physical Methods in Chemistry. (Philadelphia, PA: W.B. Saunders Publishing Company, 1977).

22. Zigban K., Nordling K., Falman A. Electron Spectroscopy. Band 2. (Moscow: Mir, 1971). [in Russian].

23. Yamada Y., Kim J., Matsuo S., Sato S. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon. 2014. 70: 59. https://doi.org/10.1016/j.carbon.2013.12.061  

24. Yamada Y., Yasuda H., Murota K., Nakamura M, Sodesawa T., Sato S. Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J. Mater. Sci. 2013. 48: 8171. https://doi.org/10.1007/s10853-013-7630-0 




DOI: https://doi.org/10.15407/hftp07.02.157

Copyright (©) 2016 O. S. Karpenko, V. V. Lobanov, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.