Chemistry, Physics and Technology of Surface, 2018, 9 (1), 64-73.

Influence of an aggressive environment on the corrosion resistance of multicomponent Fe amorphous alloys



DOI: https://doi.org/10.15407/hftp09.01.064

M. A. Kovbuz, O. M. Hertsyk, T. G. Pereverzieva, S. Ye. Shurko, N. L. Pandiak, K. V. Protsyshyn

Abstract


Electrochemical methods (potentiometry and voltammetry) used to evaluate the corrosion resistance of the amorphous metallic alloys (AMA) based on iron: Fe78.5Ni1.0Mo0.5Si6.0B14.0, Fe65.58Мо4.69Cr7.92P6.93Si2.85B5.94, Fe55Ni20.28Cr7.04Mo1.61V1.07B6.56Al2.67Si1.07 in aggressive environments of distilled H2O, 0.5 М solutions of HCl, NaOH, NaCl and saturated solution of (NH4)2SO4 at 291, 298, 303 K. Under such conditions amorphous samples are characterized by high corrosion resistance in comparison with crystalline steel and during the exposure for 24 days samples of amorphous alloys are passivated. Due to the slower cooling rate for the bulk samples (102–103 K/min) compared the tape (104–106 K/min) the dense oxide layers are formed on the surface of the bulk amorphous alloys, providing them the highest corrosion resistance.

The microhardness of amorphous alloys exceeded the microhardness of steels in 4–5 times, especially after the previous low-temperature modification. After cooling at low temperatures the surface layers of the AMA are sealed.

Considering the high corrosion resistance we recommend amorphous alloys for laser coatings (lamination) of agricultural machines, which contact with different aggressive media. They also apply to the forest industry, the peat cutting, the grinding of garbage, and also to the military industry.


Keywords


amorphous alloys based on Fe; chemical resistance; corrosion resistance

Full Text:

PDF (Українська)

References


1. Severnev M.M., Podlekarev N.N., Sokhadze V.Sh., Kitikov V.O. Erosion and corrosion of agricultural machinery. (Minsk: Belarus. Nauka, 2011). [in Russian].

2. Korniyenko S., Korbutyak S. The problems of soil environment impact on corrosion of gas main in Ukraine. Visnyk of Taras Shevchenko National University in Kyiv. 2009. 46: 42. [in Ukrainian].

3. Khoma M.S., Arkhypov O.G. Development of electrochemical methods of corrosion monitoring for the chemical and petrochemical equipment. Fiz.-Chem. Mekhan. Materialiv. 2010. 2(8): 543. [in Ukrainian].

4. Mal'tseva G.H. Electrochemical and chemical corrosion processes. (Penza: Penza State University, 2004). [in Russian].

5. Mykhailovych Ya., Romanyuk O., Rubets' A., Zasun'ko A. The problem of agricultural machinery storage. Propozytsiya. 2007. 10: 102. [in Ukrainian].

6. Lukina G.N., Bolshakov M.V., Pidhaichuk S.Ya. Properties of magnetron coating on the Fe-Cr-Ni-base with amourphous structure. Paton Welding Journal. 2002. 4: 31.

7. Patent US 14/855028. Stoffel N.J., Placek C., Johnson K.A., Baez H. Agricultural blades and machine parts with amorphous metal laser cladding. 2015.

8. Naploszek-Bilnik I., Budniok A. Otrymywanie i termiczna modyfikacja warstw kompozytowych Ni+Al. Kompozyty. 2002. 2: 52.

9. Kovryshkin M.O. Methods of forming coatings for cutting tools. Machinery in agriculture, industrial engineering, automatization. 2010. 23: 344. [in Ukrainian].

10. Rozenfel'd I.L. Atmosphere corrosion of metals. (Moscow: Nauka, 1961). [in Russian].

11. Pereverzieva T.G. Ph.D (Chem.) Thesis. (Lviv, 2016). [in Ukrainian].

12. Popovych P.V., Slobodyan Z.B. Corrosion and electrochemical behaviors of 20 steel and st. 3 steel in ammonium sulfate and nitrophoska. Mat. Sci. 2014. 49(6): 819. https://doi.org/10.1007/s11003-014-9679-6

13. Kysh L.M. Kinetics of electrochemical dissolution of metals. (Moscow: Nauka, 1990). [in Russian].

14. Makletsov V.G., Zabil'skii V.V., Nikonova R.M., Busygin A.V. Electrochemical behavior of steel ShKh15 in acid sulfate solutions as a function of the quenching temperature. Russ. J. Electrochem. 2001. 37(3): 330. https://doi.org/10.1023/A:1009050019267

15. Makletsov V.G., Zikratova O.A. Influence of anions and aging on corrosion behaviour of steels H18 and H18T3. Bulletin of Udmurt University. 2005. 1: 23. [in Russian].

16. Makletsov V.G., Kanunnikova O.M. The effect of natural ageing of quickly quenched amorphous Fe75Si12B10Nb1Cu2 alloys on their corrosion behavior sin acidic sulfate environments. Prot. Met. Phys. Chem. 2009. 45(3): 353. https://doi.org/10.1134/S2070205109030125

17. Popovich P.V., Tson O.P., Dovbush T.A. Impact of operation medium on the propagation of the surface corrosion fatigue cracks in the agricultural mashines structural elements. Bulletin of TNTU. 2014. 75(3): 157. [in Ukrainian].

18. Strukov A.V., Galushko A.S., Ryabukhin A.G., Sharlay E.V., Roschin A.V. Electrochemical behavior of amorphous alloys based upon iron and cobalt in alkaline electrolyte. Bulletin of the South Ural State University. Series "Chemistry". 2012. 10(36): 45. [in Russian].

19. Popovych P., Khomyk N., Dobrovolska L. Operating-life of thin-walled structural elements of bearings systems of agricultural machines under loading and corrosive environment. Bulletin of KhNTU. 2014. 146: 142. [in Ukrainian].

20. Patent US 20120186733 A1. Croopnick G.A. Amorphous alloys armor. 2012.

21. Petrzhik M.I., Vakaev P.V., Chueva T.R., Vakaev P.V. From Bulk Metallic Glasses to Amorphous Metallic Coatings. J. Metastab. Nanocryst. Mater. 2005. 24‒25: 101. https://doi.org/10.4028/www.scientific.net/JMNM.24-25.101




DOI: https://doi.org/10.15407/hftp09.01.064

Copyright (©) 2018 M. A. Kovbuz, O. M. Hertsyk, T. G. Pereverzieva, S. Ye. Shurko, N. L. Pandiak, K. V. Protsyshyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.