Chemistry, Physics and Technology of Surface, 2022, 13 (4), 455-466.

Structural and morphological features of microcrystalline сellulose from soybean straw by organosolvent treatment



DOI: https://doi.org/10.15407/hftp13.04.455

T. V. Tkachenko, D. S. Kamenskyh, Y. V. Sheludko, V. O. Yevdokymenko

Abstract


The main idea of this work is to study the possibility of obtaining microcrystalline cellulose from multi-ton and low-value agricultural waste and investigation its structural properties. Air-dry soybean straw, an agricultural waste, was used for the research. Microcrystalline cellulose (MCC) was obtained from it by the method of organo-solvent cooking. Using the methods of XRD, XRF, FTIR-ATR, AFM, TGA and DSC, the structure and morphology of MCC were studied. It is found that increasing the hydromodule reduces the content of lignin and inorganic components. At the same time, both the yields of the MCC and its qualitative characteristics are declining. First of all, the crystallinity index of the MCC decreases with the increasing amount of the liquor ration. The band corresponded to symmetric CH2 bendings at 1435–1429 cm–1, that is known as the crystallinity band, decreased with increasing amount of the liquor ration. The AFM method shows that when forming the surfaces of MCC 10 particles, not only groups of particles are formed, the heights of the elements of which range from 23.8–28.1 to 16.9–26.8 nm, but also elongated units on the surface of which there are individual particles. The surface roughness is 1.6 nm. At the same time, the surface of the MCC 15 has a surface roughness Ra = 3.1 nm. The particles are distributed throughout the scan, with no clusters of particles and their agglomerates, and their heights are 14.4; 18.7; 20.6; 17.4 and 23.9; 18.1; 24.7 nm. 3D image of the particles showed that the particles are pyramids of different configurations similar to the particles in the MCC 10. It should be noted that the range of depressions and heights characteristic of MCC 15 is much smaller (from –13 to +20.7 nm) than in the MCC 10 (from –17.5 to 45.5 nm).


Keywords


microcrystalline сellulose; soybean straw; liquor ration; relief of the surface; atomic force microscopy

Full Text:

PDF

References


Battista O.A., Smith P.A. Microcrystalline cellulose. Ind. Eng. Chem. 1962. 54(9): 20. https://doi.org/10.1021/ie50633a003

FMC. Fun Facts about Avicel Microcrystalline Cellulose Also Known as Cellulose Gel. - 2013. Available from: http://www. fmcbiopolymer.com/Food/Home/News/FiftyYearso-fAvicel. aspx. (20.11.2021).

Albers J., Knop K., Kleinbudde P. Brand-to-brand and batch-to-batch uniformity of microcrystalline cellulose in direct tableting with a pneumo-hydraulic tablet press. Pharmazeutische Industrie. 2006. 68(12): 1420.

Lee H.V., Hamid Sh.B.A., Zain S.Kh. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal. 2014. 2014: 631013. https://doi.org/10.1155/2014/631013

Luukkonen P. Rheological properties and the state of water of microcrystalline cellulose and silicified microcrystalline cellulose wet masses. (Diss Biocentri Viikki Univ Helsingiensis, 2001). https://doi.org/10.1016/S0928-0987(00)00197-4

Jain J.K., Dixit V.K., Varma K.C. Preparation of microcrystalline cellulose from cereal straw and its evaluation as a tablet excipient. Indian J. Pharm. Sci. 1983. 45: 83.

Paralikar K.M., Bhatawdekar S.P. Microcrystalline cellulose from bagasse pulp. Biol. Wastes. 1988. 24(1): 75. https://doi.org/10.1016/0269-7483(88)90029-8

Uesu N.Y., Pineda F.A., Hechenleitner A.A. Microcrystalline cellulose from soybean husk effects of solvent treatments on its properties as acetyl-salicyclic acid carrier. Int. J. Pharm. 2000. 206(1-2): 85. https://doi.org/10.1016/S0378-5173(00)00532-9

Bochek A.M., Shevchuk I.L., Lavrentev V.N. Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw. Russ. J. Appl. Chem. 2003. 76: 1679. https://doi.org/10.1023/B:RJAC.0000015737.07117.12

Alemdar A., Sain M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Techol. 2008. 68(2): 557. https://doi.org/10.1016/j.compscitech.2007.05.044

Bhattacharya D., Greminario L.T., Winter W.T. Isolation, preparation and characterization of cellulose microfibres from bagasse. Carbohydr. Polym. 2008. 73(3): 371. https://doi.org/10.1016/j.carbpol.2007.12.005

Cherian B.M., Leão A.L., de Souza S.F., Thomas S., Pothan L.A., Kottaisamy M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym. 2010. 81(3): 720. https://doi.org/10.1016/j.carbpol.2010.03.046

Suesat J., Suwanruji P. Preparation and properties of microcrystalline cellulose from corn residues. Adv. Mater. Res. 2011. 332-334: 1781. https://doi.org/10.4028/www.scientific.net/AMR.332-334.1781

Azubuike C.P., Okhamafe A.O. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recyl Org. Waste Agric. 2012. 1: 1. https://doi.org/10.1186/2251-7715-1-9

Oyeniyi Y.J., Itiola O.A. The physicochemical characteristic of microcrystalline cellulose, derived from sawdust, agricultural waste products. Int. J. Pharm. Pharm. Sci. 2012. 4(1): 197.

Spigno G., Amendola D., Vellingiri V. Screening of four different agro-food by-products for the recovery of antioxidants and cellulose. Chem. Eng. Transac. 2014. 37: 757.

Olugbenga O., Labunmi L., Bodunde O. Microcrystalline cellulose from plant wastes through sodium hydroxide-anthraquinone-ethanol pulping. Bio. Res. 2014. 9(4): 6166. https://doi.org/10.15376/biores.9.4.6166-6192

Kuznetsov B.N., Taraban'ko V.E., Kuznetsova S.A. New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet. Catal. 2008. 49(4): 517. https://doi.org/10.1134/S0023158408040101

Barbash V.A., Yaschenko O.V., Shniruk O.M. Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res. Lett. 2017. 12: 241. https://doi.org/10.1186/s11671-017-2001-4

Kuznetsov B.N., Chesnokov N.V., Garyntseva N.V., Yatsenkova O.V. Integrated catalytic processing of aspen wood into liquid and solid biofuels. J. Siber. Fed. Univ. Chem. 2013. 3: 286.

Ejikeme P.M. Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp. Cellulose. 2008. 15: 141. https://doi.org/10.1007/s10570-007-9147-7

Sherif S.Z. Hindi. Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry. Nanosci. Nanotechnol. Res. 2017. 4(1): 17.

Kuthi F.A.A., Rabbi'atul N., Norzali'A., Badri Kh.H. Thermal characteristics of microcrystalline cellulose from oil palm biomass. Malaysian Journal of Analytical Sciences. 2016. 20(5): 1112. https://doi.org/10.17576/mjas-2016-2005-17

Tkachenko T.V., Yevdokymenko V.O., Kamenskyh D.S., Filonenko M.M., Vakhrin V.V., Kashkovsky V.I. Processing of vegetable waste of different origin. Sci. Innov. 2018. 14(2): 48. https://doi.org/10.15407/scine14.02.048

Tigunova O.O., Beiko N.E., Kamenskyh D.S., Tkachenko T.V., Yevdokymenko V.O., Kashkovskiy V.I., Shulga S.M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol. Biotechnologia Acta. 2016. 9(4): 28. https://doi.org/10.15407/biotech9.04.028

Obolenskaya A.V., Yelnitskaya Z.P., Leonovich A.A. Laboratory work on the chemistry of wood and cellulose. (Moscow: Ecology, 1991). [in Russian].

Swantomo D., Giyatmi, Adiguno S.H., Wongsawaeng D. Preparation of microcrystalline cellulose from waste cotton fabrics using gamma irradiation. Eng. J. 2017. 21(2): 173. https://doi.org/10.4186/ej.2017.21.2.173

Hu H., Zhang Y., Liu X., Huang Z., Chen Y., Yang M., Qin X., Feng Z. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polym Bull. 2014. 71: 453. https://doi.org/10.1007/s00289-013-1070-5

Herawan T., Panjaitan F.R., Yamanaka S. Morphological and structural changes in microcrystalline cellulose from OPEFB by mechanical grinding. In: IOP conference series: earth and environmental science. 2018. 166: 012001. https://doi.org/10.1088/1755-1315/166/1/012001

Duan L., Yu W., Li Zh. Analysis of structural changes in jute fibers after peracetic acid treatment. J. Eng. Fibers Fabr. 2017. 12(1): 33. https://doi.org/10.1177/155892501701200104

Tkachenko T., Sheludko Y., Yevdokymenko V., Kamenskyh D., Khimach N., Povazhny V., Aksylenko M., Kashkovsky V. Physico-chemical properties of flax microcrystalline cellulose. Appl. Nanosci. 2022. 12: 1007. https://doi.org/10.1007/s13204-021-01819-2

Latif M.H.A., Mahmood Y.F. Isolation and Characterization of Microcrystalline Cellulose and Preparation of Nano-Crystalline Cellulose from Tropical Water Hyacinth. Jour. for Pure & Appl. Sci. 2018. 31(1): 180. https://doi.org/10.30526/31.1.1865

Levdansky V.A., Levdansky A.V., Kuznetsov B.N. Ecology safe method of obtaining from firwood the cellulosic product with high content of alfa-cellulose. Chemistry of Plant Raw Materials. 2014. 2: 35. [in Russian].

Hazwan Hussin M., Nurhanina Ayu Husin, Ibrahim Bello, Nurmaizatulhana Othman, Mohamad Abu Bakar, Mohamad Haafiz M.K. Isolation of Microcrystalline Cellulose (MCC) from Oil Palm Frond as Potential Natural Filler for PVA-LiClO4 Polymer Electrolyte. Int. J. Electrochem. Sci. 2018. 13: 3356. https://doi.org/10.20964/2018.04.06

Lokshina I., Lugovskoy S., Melisbekova K., Karabaev S.O., Gainullina I., Andreeva E. Microcrystalline cellulose: extraction and analysis. In: Proceedings of the Fourteenth Israeli-Russian Bi-national Workshop. (Ariel, 2015). P. 101.

Latif M.H.A., Mahmood Y.F. Isolation and characterization of microcrystalline cellulose and preparation of nano-crystalline cellulose from tropical water hyacinth. J. Pure. Appl. Sci. 2018. 31(1): 180. https://doi.org/10.30526/31.1.1865

Jia N., Li S.-M., Ma M.-G., Zhu J.-F., Sun R.-C. Synthesis and characterization of cellulose-silica composite fiber in ethanol/water mixed solvents. BioRes. 2011. 6(2): 1186.

Szczes'niak L., Rachocki A., Tritt-Goc J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 2008. 15: 445. https://doi.org/10.1007/s10570-007-9192-2

El-Sakhawy M., Hassan M.L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr. Polym. 2007. 67(1): 1. https://doi.org/10.1016/j.carbpol.2006.04.009

Trachea D., Hussinb M.H., Chuinb C.T.H., Sabarc S., Fazitad M.R.N., Taiwod O.F.A., Hassand T.M., Haafiz M.K.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application. A review. Int. J. Biol. Macromolecules. 2016. 93: 789. https://doi.org/10.1016/j.ijbiomac.2016.09.056




DOI: https://doi.org/10.15407/hftp13.04.455

Copyright (©) 2022 T. V. Tkachenko, D. S. Kamenskyh, Y. V. Sheludko, V. O. Yevdokymenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.