Chemistry, Physics and Technology of Surface, 2017, 8 (2), 143-154.

Influence of pulse electric field on the surface properties of lactic acid bacteria Lactobacillus plantarum and biogenic formation of ultradisperse silver



DOI: https://doi.org/10.15407/hftp08.02.143

V. I. Podolska, O. Yu. Voitenko, Z. R. Ulberg, L. M. Yakubenko, N. I. Grishchenko, V. N. Ermakov

Abstract


Some species of lactic acid bacteria, due to the specific supramolecular surface layers, may be used for biogenic synthesis of practically monodisperse silver nanoparticles. Biological practicable effects of low pulse electric fields (no more than several tens of volt/centimeter) attract the researchers’ interest pointed at their application in biotechnologies, medicine etc. For this reason, we investigated the surface biogenic effects of pulse electric fields in the system including the lactic acid bacteria Lactobacillus plantarum and electrolyte solution of different composition. The study tested a dependence between the bacteria surface hydrophobicity and electrokinetic potential and the parameters of pulse electric field. Surface modification of L. plantarum cell under pulse electric field treatment with pulse height 20–70 V, frequency band 100–10000 Hz and pulse duration 10 and 100 microsecond specified the conditions of biogenic silver nanoparticles formation induced by additional discharge of cell metabolite. Under the hydrophobization conditions, cells synthesized more mobile, less sized and less aggregated particles. At the same time, surface hydrophobization specified the condition for large cluster structures formation which include polysaccharides/polypeptides and silver ultrafine particles. The method of low electric field treatment with pulse height 20 V and frequency band 500–2000 Hz seems to be more favorable for biogenic intracellular formation of the stabilized silver nanoparticles. Such approach may be useful under development of a new antibacterial and fungicide cell based material impregnated with ultradisperse substances.


Keywords


nanosized silver; lactic acid bacteria; biogenic synthesis; hydrophobicity; electrokinetic potential

Full Text:

PDF (Українська)

References


1. Shenderov B.A. Medical microbial ecology and functional nutrition. V.3. Probiotics and functional nutrition. (Moscow: Grant, 2001). [in Russian].

2. Patent US 0239280 De Windt W., Vercauteren T., Verstraete W. Method for producing metal nanoparticles. 2009.

3. Sintubin L., Windt W.D., Dick J., Mast J., van der Ha D., Verstraete W., Boon N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 2009. 84(4): 741. https://doi.org/10.1007/s00253-009-2032-6

4. Sintubin L., Verstraete W., Boon N. Biologically produced nanosilver: current state and perspectives. Biotechnol. Bioeng. 2012. 109(10): 2422. https://doi.org/10.1002/bit.24570

5. Crystalline bacterial cell surface proteins. Ed. U.V. Sleytr, P.Mesner, D. Pum, M. Sara. (Austin: R.G. Landes Company/Academic Press, 1996).

6. Sleytr U.V., Messner P., Pum D., Sara M. Crystalline bacterial cell surface layers (S Layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 1999. 38: 1034. https://doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1034::AID-ANIE1034>3.0.CO;2-#

7. Podolska V.I., Voitenko O.Yu., Grishchenko N.I., Ulberg Z.R., Savkin O.G., Yakubenko L.M. Chemical-microbiological and biogenic formation of ultrafine silver in lactic acid bacteria cells. Material Science of Nanostructures. 2014. 2: 53. [in Russian].

8. Podolska V.I., Voitenko O.Yu., Savkin O.G., Grishchenko N.I., Ulberg Z.R., Yakubenko L.M. Characterization of superdispersed silver particles precipitated in lactobacteria cells. Material Science of Nanostructures. 2014. 1: 64. [in Russian].

9. Anil Kumar S., Abyaneh M.K., Gosavi Sulabha S.W., Kulkarni S.K., Pasricha R, Ahmad A, Khan M.I. Nitrate reductase–mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007. 29(3): 439. https://doi.org/10.1007/s10529-006-9256-7

10. Park Y., Hong Y.N., Weyers A., Kim Y.S., Linhardt R.J. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 2011. 5(3): 69. https://doi.org/10.1049/iet-nbt.2010.0033

11. Podolska V.I., Eemakov V.M., Voitenko O.Yu., Ulberg Z.R., Grishchenko N.I. Mechanism of silver nanoparticles synthesis in cell matrix. Material Science of Nanostructures. 2011. 4: 66. [in Russian].

12. Valle A., Zanardini E., Abbruscato P., Argenzio P., Lustrato G., Ranalli G., Sorlini C. Effects of low electric current (LEC) treatment on bacterial cultures. J. Appl. Microbiol. 2007. 103(5): 1376. https://doi.org/10.1111/j.1365-2672.2007.03374.x

13. Podolska V.I., Yakubenko L.N., Ulberg Z.R., Ermakov V.N., Grishchenko N.I. Effect of weak pulse electric fields on surface properties and destructive activity of Pseudomonas bacteria. Colloid J. 2010. 72(6): 830. https://doi.org/10.1134/S1061933X10060153

14. Sanchez-Varquez V., Gonzalez I., Gutierrez-Rojas M. Electric field as pretreatment to enhance the activity of whole-cell biocatalyst for hydrocarbon degradation in contaminated water. Chem. Eng. J. 2015. 260: 37. https://doi.org/10.1016/j.cej.2014.08.036

15. Luo Q., Wang H., Zhang X., Qian Y. Effect of direct electric current on cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 2005. 71(1): 423. https://doi.org/10.1128/AEM.71.1.423-427.2005

16. Podolska V.I., Ermakov V.N., Yakubenko L.N., Ulberg Z.R., Gryshchenko N.I Effect of low-intensity pulsed electric fields on the respiratory activity and electrosurface properties of bacteria. Food Biophysics. 2009. 4(4): 281. https://doi.org/10.1007/s11483-009-9126-7

17. Podolska V.I., Voitenko E.Yu., Yakubenko L.N., Ulberg Z.R., Tsyganovich E.A., Ermakov V.N., Grishchenko N.I. Effect of low-intensity pulsed electric field on the interaction of some microorganisms with silver and copper ions. Material Science of Nanostructures. 2010. 2: 64. [in Russian].

18. Sanin S.L., Sanin F.D., Bryers J.D. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem. 2003. 38(6): 909. https://doi.org/10.1016/S0032-9592(02)00173-5

19. Schär-Zammaretti P., Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformation. Biophys. J. 2003. 85(6): 4076. https://doi.org/10.1016/S0006-3495(03)74820-6

20. Boonaert C.J.P., Rouxhet P.G. Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl. Environ. Microbiol. 2000. 66(6): 2548. https://doi.org/10.1128/AEM.66.6.2548-2554.2000

21. Shilov V.N., Voitenko E.Yu., Marochko L.G., Podolska V.I. Electric characteristics of cellular structures containing colloidal silver. Colloid J. 2010. 72(1): 125. https://doi.org/10.1134/S1061933X10010138

22. Andreev V.C., Gorshenina E.S., Dronova N.V., Popov V.G. Electroadaptation of microorganisms to stress effect. Biotechnology. 1986. 2(6): 41.




DOI: https://doi.org/10.15407/hftp08.02.143

Copyright (©) 2017 V. I. Podolska, O. Yu. Voitenko, Z. R. Ulberg, L. M. Yakubenko, N. I. Grishchenko, V. N. Ermakov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.