Coagulation of Colloidal Solutions of Rod-Like Luminescent Nanoparticles nLaVO<sub>4</sub>: Eu<sup>3+</sup>
Abstract
Colloidal properties of hydrosol based on europium doped lanthanum orthovanadate have been investigated. Nanoparticles of hydrosol stabilized by disodium salt of EDTA have rod–like shape with an average size of the particles of 8?80 nm. Thresholds for rapid coagulation of hydrosol with inorganic electrolytes and certain surfactants, dyes and aminoacids were determined. It has been shown that the colloidal solution behaves as a hydrophobic sol of particles with a negative charge. The data on the aggregative stability of hydrosol can be used to define conditions for performing biological experiments with nanoparticles.References
1. Shen J., Sun L.D., Zhu J.D. et al. Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 2010. 20 (21). 3708.
2. Mader H.S., Kele P., Saleh S.M., Wolfbeis O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Current Opin. Chem. Biol. 2010. 14 (5). 582.
3. Nabiev I., Mitchell S., Davies A. Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Letters. 2007. 7 (11). 3452.
4. Patra C.R., Bhattacharya R., Patra S. et al. Lanthanide phosphate nanorods as inorganic fluorescent labels in cell biology research. Clinical Chemistry. 2007. 53 (11). 2029.
5. Bouzigues C., Gacoin Th., Alexandrou A. Biological applications of rare-earth based nanoparticles. ACS Nano. 2011. 5 (11). 8488.
6. Клочков В.К., Кавок Н.С., Малюкин Ю.В., Семиноженко В.П. Эффект специфи-ческого взаимодействия нанокристаллов GdYVO4:Eu3+ с ядрами клеток // Доп. НАН України. – 2010. – № 10. – С. 81–86.
7. Yamamoto A., Honma R., Sumita M., Hanawa T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J. Biomed. Mater. Res. 2004. 68A. 244.
8. Oberdörster G., Ferin J., Lehnert B.E. Correlation between particle size, in vivo particle persistence and lung injury. Environ. Health Perspect. 1994. 102. 173.
9. Warheit D.B., Webb T.R., Sayes C.M. et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon size and surface area. Toxicol. Sci. 2006. 91 (1). 227.
10. Иванов В.К., Щербаков А.Б., Усатенко А.В. Структурно-чувствительные свойства и биомедицинские применения нано-дисперсного диоксида церия // Успехи химии. – 2009. – Т. 78, № 9. – С. 924–941.
11. Rzigalinski B.A., Meehan K., Davis R.M. et al. Radical nanomedicine. Nanomedicine. 2006. 1 (4). 399.
12. Jiang J., Oberdorster G., Biswas Pr. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 2009. 11. 77.
13. Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. The influence of agglomeration of nanoparticles on their SOD mimetic activity. Colloids Surf. A. 2012. 409. 176.
14. Дерягин Б.В. Теория устойчивости коллоидов и тонких пленок.– Москва: Наука, 1986. – 206 с.
15. Кройт Г.Р. Наука о коллоидах, Необратимые системы, Т. 1 – Москва: Иностр. литература, 1955. – 521 с.
16. Воюцкий С.С. Курс коллоидной химии. – Москва: Химия, 1976. – 512 с.
17. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. – Москва: Химия, 1989. – 464 с.
18. Klochkov V.K., Malyshenko A.I., Sedyh O.O., Malyukin Yu.V. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Func. materials. 2011. 18 (1). 111.
19. Fan W., Bu Y., Song X., Sun S. Selective synthesis and luminescent properties of monazite- and zircon-type LaVO4:Ln (Ln = Eu, Sm, and Dy) Nanocrystals. Cryst. Growth Des. 2007. 7 (11). 2361.
20. Rambabua U., Amalnerkara D.P., Kalea B.B. et al. Fluorescence spectra of Eu3+-doped LnVO4 (Ln = La and Y) powder phosphors. Mater. Res. Bull. 2000. 35. 929.
21. Huignard A., Gacoin T., Boilot J-P. Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem. Mater. 2000. 12. 1090.
22. Yu M., Lin J., Wang Z. et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+). Chem. Mater. 2002. 14. 2224.
23. Huignard A., Buissette V., Franville A-C. et al. Emission processes in YVO4:Eu nanoparticles. J. Phys. Chem. B. 2003. 107. 6754.
24. Mchedlov-Petrossyan N.O., Klochkov V.K., Andrievsky G.V. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc., Faraday Trans. 1997. 93. 4343.
25. Барбой В.М., Глазман Ю.М. О коагуляции лиофобных золей смесями электролитов // Исследования в области поверхностных сил. – Москва: Наука, 1967. – С. 207–218.
26. Абрамзон А.А., Бочаров В.В., Гаевой Г.И. Поверхностно-активные вещества. – Ленинград: Химия, 1979. – 376 с.
27. Адамсон А. Физическая химия поверхности. – Москва: Мир, 1979.– 568 с.
28. Шелудко А. Коллоидная химия.– Москва: Мир, 1984.– 196 с.
Downloads
How to Cite
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.