Хімія, фізика та технологія поверхні, 2014, 5 (2), 164-173.

Гідротермальне модифікування ванадій-молібден-оксидних каталізаторів окиснювального дегідрування пропану



S. V. Khalameida, N. D. Konovalova, V. O. Zazhigalov, V. I. Zarko

Анотація


Досліджено вплив умов гідротермальної обробки (ГТО) V2O5–MoOкаталізаторів звичайним та мікрохвильовим нагріванням на їх фізико-хімічні та каталітичні властивості.. Перетворення, які відбуваються у системі, вивчено за допомогою рентгенофазового аналізу та ІЧ-спектроскопії, адсорбції азоту, вимірювання електропровідності. Активність V-Mo-O зразків у реакції окиснювального дегідрування пропану зростає в ряду ГТО–300°С > ГТО–350°С > ГТО–250°С у відповідності зі зміною їх електропровідності G·10–5: 11 > 6 > 1 Cм/м.

Ключові слова


V2O5; MoO3; твердий розчин; гідротермальне модифікування; електропро-відность; дегідрування пропану

Повний текст:

PDF

Посилання


1. Шиманская М.В., Лейтис Л.Я., Сколмейстере Р.А. и др. Ванадиевые катализаторы окисления гетероциклических соединений. – Рига: Зинатне, 1990. – 255 с.

2. Bielanski A., Najbar M. V2O5-MoO3 catalysts for benzene oxidation // Appl. Catal. A. – 1997. – V. 1. – P. 223 – 261.

3. Плясова Л.М., Зенковец Г.А., Оленькова И.П., Тарасова Д.В. Формирование фазового состава окисной ванадий-молибденовой системы при термическом разложении парамолибдата и метаванадата аммония // Изв. СО АН СССР. Сер. хим. наук. – 1980. – № 9, вып. 4. – С. 97–104.

4. Волков В.Л. Фазы внедрения на основе оксидов ванадия. – Свердловск: УНЦ АН СССР, 1987. – 180 с.

5. Гольдштейн Н.Д., Мищенко Ю.А., Гельбштейн А.И. Энергия связи поверхностного кислорода в системе V2O5 – MoO3 разных составов // Журн. физ. химии. – 1972. – Т. 46, № 1. – С. 106–110.

6. Волков В.Л. Исследование хемосорбции кислорода в системе V2O5 – MoO3 // Журн. физ. химии. – 1985. – Т. 59, № 2. – С. 428–432.

7. Parmaliana A., Sokolovskii V., Miceli D.and Giordano N. Highly effective vanadia-silica catalyst for propane oxidative dehydro-genation // Appl. Catal. A. – 1996. – V. 135. – P. L1–L5.

8. Klisinska A., Loridant S., Grzybowska B. et al. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts. II. Structure and physicochemical properties of the catalysts and their correlations with oxidative dehydrogenation of propane and ethane // Appl. Catal A: General. – 2006. – V. 309. – P. 17–27.

9. Dai H., Bell A.T., Iglesia E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane // J. Catal. – 2004. – V. 221. – P. 491–499.

10. Taylor S.H., Pollard A.J.J. Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation // Catal.Today. – 2003. – V. 81. – P. 179–188.

11. Tichy J. Oxidation of acrolein to acrylic acid over vanadium-molybdenum oxide catalysts // Appl. Catal A: General. – 1997. – V. 157. – P. 363–385.

12. Pless J.D., Bardin B.B., Kim H-S. et al. Catalytic oxidative dehydrogenation of propane over Mg-V/Mo oxides // J. Catal. – 2004. – V. 223. – P. 419–431.

13. Botella P., López-Nieto J.M., Solsona B. Preparation, characterization and catalytic behavior of a new TeVMoO crystalline phase // Catal. Lett. – 2002. – V. 78. – P. 383–387.

14. Lin M.M. Selective oxidation of propane to acrylic acid with molecular oxygen // Appl. Catal. A: General. – 2001. – V. 207. – P. 1–16.

15. Андрушкевич Т.В. Механизм каталитического действия оксидных систем в реакциях окисления альдегидов в карбоновые кислоты // Кинетика и катализ. – 1997. – Т. 38, № 2. – С. 289–300.

16. Ueda W., Oshihara K. Selective oxidation of light alkanes over hydrothermally synthesized Mo-V-M-O oxide catalysts // Appl. Catal. A. – 2000. – V. 200. – P. 135–143.

17. Skwarek E., Khalameida S., Janusz W. et al. Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides // J. Therm. Anal. Calorim. – 2011. – V. 106. – P. 881–894.

18. Khalameida S., Sydorchuk V., Leboda R. et al. Physical-chemical transformations in the system V2O5-(NH4)2Mo2O7 under hydro-thermal conditions // Central Eur. J. Chem. – 2014. – V. 12. – P. 140–152.

19. Vitry D., Morikawa Y., Dubois J.L., Ueda W. Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid // Appl.Catal A: Genera l. – 2003. – V. 251. – P. 411–424.

20. López-Nieto J.M., Botella P., Solsona B., Oliver J.M. The selective oxidation of propane on Mo-V-Te-Nb-O catalysts: The influence of Te-precursor // Catal.Today. – 2003. – V. 81. – P. 87–94.

21. Duc F., Gonthier S., Brunelli M., Trombe J.C. Hydrothermal synthesis and structure determi-nation of the new vanadium molybdenum mixed oxide V1.1Mo0.9O5 from synchrotron   X-ray powder diffraction data // J. Solid State Chem. – 2006. – V. 179. – P. 3591–3598.

22. Agterdenbos J., Eggink A.J.R. A rapid determination of the deviation from stoichiometry in vanadium pentoxide // Z. anorg. allg Chem. – 1972. – V. 388. – P. 177–180.

23. Pieters T.W.J., Kuilenburg J.M. Relationship between V4+ and Mo6+ contents in V2O5 doped with MoO3 // Z. anorg. allg. Chem. – 1973. – V. 399. – P. 170–174.

24. Mougin O., Dubois J.-L., Mathieu F., Rousset A. Metastable hexahonal vanadium molybdate study // J. Solid State Chem. – 2000. – V. 152. – P. 353–360.

25. Волков В.Л., Захарова Г.С., Бондаренкo В.М. Ксерогели простых и сложных поливанадатов. – Екатеринбург: Уральское отд. Ин-та химии твердого тела, 2001. – 195 с.

26. Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: СО РАН, 2004. – 440 с.

27. Юхневич Г.В. Инфракрасная спектроскопия воды. – Москва, 1973. – 207 с.

28. Накомото К. Инфракрасные спектры неорганических соединений. – Москва: Мир, 1966. – 411 с.

29. Allersma T., Hakim R., Kennedy T.N., Mackenzie J.D. Structure and physical properties of solid and liquid vanadium pentoxide // J. Chem. Phys. – 1967. – V. 46. – P. 154–160.

30. Нейман А.Я., Барсанов С.Ю. Новые данные о механизме массопереноса при твердофазных реакциях. III. Взаимодействие оксидов с низкой поверхностной энергией (реакция между V2O5 и МоО3) // Кинетика и катализ. – 1999. – T. 40, № 1. – С. 50–57.

31. Burzo E., Stanescu L., Ardelean I., Chipara M. Soluţii solide pe bază de V2O5. II. Proprietăţi fizice // Revista Chim. – 1980. – V. 31. – P. 351–357.

32. Shaporev A.S., Ivanov V.K., Baranchikov A.E., Tret’yakov Yu.D. Microwave-assisted hydro-thermal synthesis and photocatalytic activity of ZnO // Inorg. Mater. – 2007. – V. 43. – P. 35–39.

33. Manoharan S. S., Prasanna S.S.J., Rao M.L., Sahu R.K. Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures // J. Am. Ceram. Soc. – 2002. – V. 85. – P. 2469–2471.

34. Vislovskiy V.P., Suleimanov T.E., Sinev M.Yu. et al. On the role of heterogeneous and homogeneous processes in oxidative dehydrogenation of C3-C4 alkanes // Catal Today. – 2000. – V. 61. – P. 287–293.

35. Solsona B., Blasco T., Lopez Nieto J.M. et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in oxidative dehydrogenation of alkanes // J. Catal. – 2001. – V. 203. – P. 443–452.

36. Monaci R., Rombi E., Soinas V. et al. Oxida-tive dehydrogenation of propane over V2O5/TiO2/SiO2 catalysts obtained by grafting titanium and vanadium alkoxides on silica // Appl. Catal. A: General. – 2001. – V. 214. – P. 203–212.

37. Karakoulia S.A., Triantafyllidis K.S., Lemoni-dou A.A. Preparation and characterization of vanadia catalysts supported on non-porous, microporous and mesoporous silicates for oxidative dehydrogenation of propane (ODP) // Micropor. Mesopor. Mater. – 2008. – V. 110. – P. 157–166.




Copyright (©) 2017 S. V. Khalameida, N. D. Konovalova, V. O. Zazhigalov, V. I. Zarko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.