Хімія, фізика та технологія поверхні, 2015, 6 (2), 203-210.

Вплив допування йонами металу та неметалу на структурні і фотокаталітичні властивості плівок діоксиду титану



DOI: https://doi.org/10.15407/hftp06.02.203

N. A. Shestopal, O. P. Linnik, N. P. Smirnova

Анотація


Золь-гель методом синтезовані плівки діоксиду титану, допованого йонами металу (Zn2+ або Zr4+) та неметалу (азот). Спостерігається значне поглинання плівки в видимій області та оцінено значення ширини забороненої зони для непрямих електронних переходів. Результати рентгенофазового аналізу свідчать про утворення кристалічної фази анатазу, однак спостерігається зниження інтенсивності та уширення його піку зі збільшенням вмісту сечовини. Методом комбінаційного розсіювання також показано, що відбувається формування анатазу в плівках з подвійним допантом. Хімічний стан елементів, їх співвідношення на поверхні та впровадження азоту в кристалічну матрицю досліджено за допомогою рентгенофотоелектронної спектроскопії. Отримані результати показали, що азот заміщує атоми кисню тільки в структурі TiO2/Zr4+/N. Досліджено фотокаталітичні властивості в процесі розкладання тетрацикліну гідрохлориду. Збільшення активності в три рази спостерігалось для плівки TiO2/N. Модифікація йонами металів не вплинула на фотокаталітичні властивості під ультрафіолетовим та видимим світлом.

Ключові слова


допований йонами металу та неметалу діоксид титану; оптичні властивості; РФА; метод кобінаційного розсіювання; РФЕС; фотокаталітична активність

Повний текст:

PDF (English)

Посилання


1. Asahi R., Morikawa T., Ohwaki T. et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide, Science, 293 (2001) 269.

2. Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNpowders, J. Phys. Chem. В, (2003) 5483.

3. Ihara T., Miyoshi M., Triyama Y. et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal., 42 (2003) 403.

4. Zhao Z., Liu Q. Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation. J. Phys. D. Appl. Phys., 41 (2008) 1.

5. Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light, Chem. Phys. Lett., 123 (1986) 126.

6. Beranek R., Neumann B., Sakthivel S. et al. Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface phototvoltage studies, Chem. Phys., 339 (2007) 11.

7. Cong Y., Zhang J., Chen F., Anpo M. Synthesis and characterization of nitrogen-doped TiOnanophotocatalyst with high visible light activity. J. Phys. Chem. С, 111 (2007) 6976.

8. Kisch H., Sakthivel S., Janczarek M., Mitoraj D. A low-band gap, nitrogen-modified titania visible-light photocatalyst, J. Phys. Chem. С, 111 (2007) 11445.

9. Emeline A.V., Sheremetyeva N.V., Khomchenko N.V. et al. Photoinduced formation of defects and nitrogen-stabilization of color centers in N-doped titanium dioxide, J. Phys. Chem. С, 111 (2007) 11456.

10. Kuznetsov V.N., Serpone N. Photo-induced coloration and photobleaching of titanium dioxide in TiO2/polymer compositions on UV- and visible-light excitation into the color centers' absorption bands. Direct experimental evidence negating band gap narrowing in anion-/cation-doped TiO2, J. Phys. Chem. С, 111 (2007) 15277.

11. Nakano Y., Morikawa T., Ohwaki T., Taga Y. Band-gap narrowing of TiO2 films induced by N-doping, Phys., 376 (2006) 823.

12. Di Valentin C., Pacchioni G., Selloni A. et al. Characterization of paramagnetic species in N-doped TiOpowders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B, 109 (2005) 11414.

13. Livraghi S., Paganini M.C., Giamello E.G. et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light., J. Am. Chem. Soc., 128 (2006) 15666.

14. Batzill M., Morales E.H., Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase, Phys. Rev. Lett., 96 (2006) 026103.

15. Mitoraj D., Kisch H. On the mechanism of urea-induced titania modification, Chem. Eur. J., 16 (2010) 261.

16. Mitoraj D., Kisch H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light., Angew. Chem. Int. Ed., 47 (2008) 9975.

17. Kisch H. Semiconductor photocatalysis–mechanistic and synthetic aspects., Angew. Chem. Int. Ed., 52 (2013) 812.

18. Gnatuk Yu., Smirnova N., Korduban O., Eremenko A. Effect of zirconium incorporation on the stabilization of TiO2 mesoporous structure, Surface and Interface Analysis, 42 (2010) 1276.

19. Linnik O., Petrik I., Smirnova N. et al. TiO2/ZrO2 thin films synthesized by PLD in low pressure N-, C- and/or O-containing gases: structural, optical and photocatalytic properties, Digest Journal of Nanomaterials and Biostructures, 7 (2012) 1343.

20. Ptashko T., Smirnova N., Eremenko A. et al. Synthesis and photocatalytic properties of mesoporous TiO2/ZnO films with improved hydrophylisity, Adsorpt. Sci. Technol., 25 (2007) 35.

21. Zhang P., Shao C., Li X. et al. In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity, J. Hazard. Mater., 237 (2012) 331.

22. Gyoryova K., Balek V. Thermal stability of new Zn acetate-based complex compounds. J. Therm. Anal., 40 (1993) 519.

23. Smirnova N., Gnatyuk Yu., Eremenko A. et al. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films, International Journal of Photoenergy, Article ID 85469 (2006) 1.

24. Haiying W., Yanchun H. The photocatalytic property of nitrogen-doped TiO2 nanoball film, International Journal of Photoenergy, Article ID 179427 (2013) 6.

25. Peng W.Q., Yanagida M., Han L.Y. Rutile-anatase TiO2 photoanodes for dye-sensitized solar cells, Journal of Nonlinear Optical Physics and Materials, 19 (2010) 673.

26. Nosaka Y., Matsushita M., Nishino J., Nosaka A.Y. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mater., 6 (2005) 143.

27. Kobayakawa K., Murakami Y., Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, J. Photochem. Photobiol. A., (2005) 170, 177.

28. Beranek R., Kisch H. Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochem. Photobiol. Sci., 7 (2008) 40.

29. Yuan J., Chen M., Shi J., Shangguan W. Preparation and photocatalytic hydrogen evolution of N-doped TiO2from urea and titanium tetrachloride, Int. J. Hydrogen Energy, 31 (2006) 1326.

30. Yin S., Ihara K., Aita Y. et al. Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route, J. Photochem. Photobiol. A., 179 (2006) 105.

31. Wang C.T., Wang, Lin J.C. Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts, Appl. Surf. Sci., 254 (2008) 4500.

32. Linnik O., Smirnova N., Korduban O., Eremenko A. Gold nanoparticles in Ti1-xZnxO2 films: synthesis, structure and application, Materials Chemistry and Physics, 142 (2013) 318.

33. Matsubara K., Danno M., Inoue M. et al. Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system, Chemical Engineering Journal, 181 (2012) 754.

34. Zuoli H., Wenxiu Q., Yucheng H. et al. Electrochemical behavior and photocatalytic performance of nitrogen-doped TiOnanotubes arrays powders prepared by combining anodization with solvothermal process, Ceramics International, 39 (2013) 5545.

35. Alam M.J., Cameron D.C. Preparation and characterisation of TiO2 thin films by sol-gel method, J. Sol-Gel Sci. Technol., 25 (2002) 137.

36. Shu T., Xiang P., Zhou Z. et al. Mesoscopic nitrogen-doped TiO2 spheres for quantum dot-sensitized solar cells, Electrochimica Acta., 68 (2012) 166.

37. Mai L., Huang C., Wanga D. et al. Effect of C doping on the structural and optical properties of sol–gel TiO2vthin films, Appl. Surf. Sci., 255 (2009) 9285.

38. Trautweina C., Kummererc K. Degradation of the tricyclic antipsychotic drug Chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MS(n) and their effects against environmental bacteria, J Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 889-890 (2012) 24.

39. Smirnova N., Vorobets V., Linnik O. et al. Рhotoelectrochemical and photocatalytic properties of mesoporous TiO2 films modified with silver and gold nanoparticles, Sur. Interface Anal., 42 (2010) 1205.

40. Serpone N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts, J. Phys. Chem. B, 110 (2006) 24287.




DOI: https://doi.org/10.15407/hftp06.02.203

Copyright (©) 2015 N. A. Shestopal, O. P. Linnik, N. P. Smirnova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.