Хімія, фізика та технологія поверхні, 2015, 6 (3), 364-371.

Особливості стабілізації наночастинок міді та срібла цистеїном у водних колоїдних розчинах



DOI: https://doi.org/10.15407/hftp06.03.364

I. S. Petrik, A. M. Eremenko, N. P. Smirnova, A. I. Marinin, V. V. Olishevsky

Анотація


Наночастинки (НЧ) Cu і Ag в колоїдних розчинах синтезовано відновленням солей CuSO4·5H2O та AgNO3 у водних розчинах за допомогою NaBH4 з подальшою стабілізацією НЧ цистеїном (Cys), присутність якого забезпечує захист НЧ від окиснення. Визначено оптимальні молярні співвідношення метал:Сys для одержання стійких колоїдів НЧ. Методом лазерної кореляційної спектроскопії (ЛКС) визначено середні розміри НЧ міді (2–3 нм), срібла (близько 7 нм). Досліджено еволюцію спектрів поверхневого плазмонного резонансу (ППР) та розподіл НЧ за розмірами при зберіганні протягом 20 діб. Припускається, що інгібування бактерицидної активності НЧ відбувається внаслідок утворення хімічного зв'язку Cys з йонами Cu(I), Cu(II) та Ag(I) на поверхні НЧ.

Ключові слова


наночастинки міді; срібла; цистеїн; стабілізація; розподіл за розмірами та об’ємом

Повний текст:

PDF

Посилання


1. Maity M., Pramanik S.K., Pal U., Banerji B., Maiti N.C. Copper(I) oxide nanoparticle and tryptophan as its biological conjugate: a modulation of cytotoxic effects. J. Nanopart. Res. 2013. 16: 2179.http://dx.doi.org/10.1007/s11051-013-2179-z

2. Panigrahi S., Kundu S., Basu S., Praharaj S., Jana S., Pande S., Ghosh S.K., Pal A., Pal T. Cysteine functionalized copper organosol: synthesis, characterization and catalytic application. Nanotechnology. 2006.17(21): 5461. http://dx.doi.org/10.1088/0957-4484/17/21/028

3. Khan M.M., Kalathil S., Lee J., Cho M.H. Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Korean Chem. Soc. 2012. 33(8): 2592.http://dx.doi.org/10.5012/bkcs.2012.33.8.2592

4. Xie J., Lee J.Y., Wang D.I.C., Ting Y.P. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007. 1(5): 429. http://dx.doi.org/10.1021/nn7000883

5. Amato E., Diaz-Fernandez Y.A., Taglietti A., Pallavicini P., Pasotti L., Cucca L., Milanese C., Grisoli P., Dacarro C., Fernandez-Hechavarria J.M., Necchi V. Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir. 2011. 27(15): 9165.http://dx.doi.org/10.1021/la201200r

6. Rigo A., Corazza A., di Paolo M.L., Rossetto M., Ugolini R., Scarpa M. Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 2004. 98(9): 1495. http://dx.doi.org/10.1016/j.jinorgbio.2004.06.008

7. Ahmed M., Iqbal M., Tahir N., Islam A. Solvent free Synthesis of Cu(II) Cysteine Complexes. World Applied Science Journal. 2011. 14(2): 210.

8. Shmarakov I., Marchenko M., Mukha J., Smirnova P.P., Eremenko H.M. Cyto- and genotoxic effect of colloidal nanopreparations based on Ag and Au for primary cell cultures. Biological Systems. 2010. 2(4): 13. [in Ukrainian].

9. Lever E. Inorganic Electronic spectroscopy. (Amsterdam: Elsevier, 1987). [in Russian].

10. Petrović M.B., Radovanović M.B., Simonović A.T., Milić S.M., Antonijević M.M. The Effect of Cysteine on the Behaviour of Copper in Neutral and Alkaline Sulphate Solutions. Int. J. Electrochem. Sci. 2012. 7: 9043.

11. Saikova S., Vorobyev S., Mikhlin Y. Effect of reaction conditions on the formation of copper nanoparticles in the reduction of copper ion(II) with aqueous solutions of sodium borohydride. Journal of Siberian State University. 2012. 1: 61. [in Russian].

12. Masond M.S., El-Hamid A., Omayma H. Structural chemistry of amino acid complexes. Trans. Metal Chem.1989. 14(3): 233. http://dx.doi.org/10.1007/BF01043804

13. Petrik I.S., Eremenko A.M., Smirnova N.P., Korchak G.I., Mikhiyenkova A.I. Synthesis and stabilization of Cu nanoparticles in aqueous solutions and their bactericidal activity. Him. Fiz. Tehnol. Poverhni. (Chemistry, Physics and Technology of Surface). 2014. 5(1): 74.

14. Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008. 108(3): 846. http://dx.doi.org/10.1021/cr040090g

15. Csapó E., Patakfalvi R., Hornok V., Tóth L.T., Sipos A., Szalai A., Csete M., Dékány I. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloids and Surfaces B. 2012.98: 43. http://dx.doi.org/10.1016/j.colsurfb.2012.03.036

16. Karpov S.V. Optical effects in metal nanocolloids. Photonics. 2012. 32(2): 40.

17. Gondikas A.P., Morris A., Reinsch B.C., Marinakos S.M., Lowry G.V., Hsu-Kim H. Cysteine-induced modifications of zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 2012. 46(13): 7037. http://dx.doi.org/10.1021/es3001757




DOI: https://doi.org/10.15407/hftp06.03.364

Copyright (©) 2015 I. S. Petrik, A. M. Eremenko, N. P. Smirnova, A. I. Marinin, V. V. Olishevsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.